

Final Report
WP4 (D4.4)

LEDtech-GROW
*LED TECHNOLOGY BASED ON BISMUTH-SENSITIZED
Eu³⁺ LUMINESCENCE FOR COST-EFFECTIVE INDOOR
PLANT GROWTH*

PROGRAM-PROMIS-2024-2025

Grant Agreement: 10412

Deliverable 4.4

Final Report

Contractual Date Delivery: 02/01/2026

Project Deliverable Information Sheet

Project Ref. No. 10412

LEDtech-GROW Project

Project Title: *LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth*

Call: Program PROMIS 2023

Starting Date: 03/01/2024

Duration: 24 months

Project Website: <https://ledtechgrow-promis.org/>

Deliverable No.: D4.4.

Deliverable Type: Document

Month of delivery: 24

Contractual Delivery Date: 02/01/2026

Actual Delivery Date: 02/01/2026

Principal investigator: Dr. BOJANA MILIĆEVIĆ

Abstract: This document outlines the main objectives, methods, and results of the project focused on the development and evaluation of advanced LED materials and devices. Through material synthesis, characterization, and device fabrication, the project achieved improved emission performance and validated the proposed approach. The outcomes provide a solid basis for further research and practical applications.

Document Control Sheet

Document

Title: Final Report.docx

Authorship

Distributed to LEDtech-GROW Participants

Written by Bojana Milićević

Contributed by Jovana Periša

Approved by Bojana Milićević

Executive Summary

The presented document constitutes deliverable D4.4 – Final report of the LEDtech-GROW project. It is a public document, delivered in the context of WP4 – Management, communication, dissemination, and exploitation, Task 4.1: Scientific coordination, management, and reporting.

This report provides a comprehensive overview of the project's objectives, implemented activities, and key scientific and technological results, with a particular focus on the development, characterization, and fabrication of advanced LED materials and devices for horticultural applications. It summarizes the main achievements across all work packages, highlights dissemination efforts, and outlines the overall impact of the project, demonstrating its contribution to innovation, capacity building, and future research directions in LED-based technologies.

Table of Contents

1. Introduction.....	7
2. Summary of Deliverable D4.1 – Visibility: Website, Logo, and Leaflet (WP4, month 4)	8
3. Summary of Deliverable D4.2 – Data Management Plan (WP4, month 6).....	9
4. Summary of Deliverable D4.3 – Dissemination, communication, and exploitation plan (WP4, month 9)	11
5. Summary of Deliverable D1.1 – Report on Eu ³⁺ and Bi ³⁺ /Eu ³⁺ -activated phosphors synthesis (WP1, month 12).....	26
6. Summary of Deliverable D1.2 – Report on Eu ³⁺ and Bi ³⁺ /Eu ³⁺ -activated phosphors properties (WP1, month 15).....	32
7. Summary of Deliverable D2.1 – Report on fabricated plant-grow-targeted LEDs based on near-UV and blue-semiconductor chip (WP2, month 18).....	50
8. Summary of Deliverable D2.2 – Report on the LEDs performance (WP2, month 23).....	55
9. Summary of Deliverable D3.1 – Report on the professional development of young and early-stage researchers (WP3, month 24).....	67
10. Conclusions	69

Copyright Notice

Copyright © 2025 LEDtech-GROW project team. All rights reserved. LEDtech-GROW is a project funded by the Science Fund of the Republic of Serbia under grant agreement no. 10412. For more information on the project and contributors please see <https://ledtechgrow-promis.org/>. It is allowed to copy and distribute verbatim copies of this document containing this copyright notice; however, the modification of this document is forbidden.

Disclaimer

Vinča Institute is solely responsible for the content of this publication, and this content does not express the views of the Science Fund of the Republic of Serbia.

Abbreviations and Acronyms

Explanation	
[BYF]	BaYF ₅
[BGF]	BaGdF ₅
[CCT]	Correlated Color Temperature
[CIE]	Commission Internationale de l'Eclairage
[DEC]	Dissemination, Communication, and Exploitation
[DMP]	Data Management Plan
[DOI]	Digital Object Identifier
[EDTA-2Na]	Disodium ethylenediaminetetraacetate dihydrate
[ET]	Energy transfer
[FAIR data]	Findable, Accessible, Interoperable, Re-usable data
[FWHM]	Full width at half-maximum
[ICDD]	International Centre for Diffraction Data
[LED]	Light-emitting diode
[LEDtech-GROW]	Acronym of the Project Titled “ <i>LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth</i> ”
[Open Access]	Open access publishing (open access) means that an article is immediately provided in open access mode on the publisher or journal's website. Some publishers charge Article Processing Charges (APCs) to make articles open.
[near-UV]	near-ultraviolet
[PAR]	Photosynthetically active radiation (400–700 nm of wavelength), an essential part of the light spectrum which typically drives photosynthesis more efficiently at the red and blue regions of the spectrum
[PL]	Photoluminescence emission spectra
[P _R]	Phytochrome photoreceptors with absorption peak in the red spectral area
[P _{FR}]	Phytochrome photoreceptors with absorption peak in far-red spectral area
[PROMIS 2023]	The Program for Excellent Projects of Young Researchers (PROMIS) is a program of the Science Fund of the Republic of Serbia intended of excellent projects for young researchers in the early phase of their careers

[PXRD]	Powder X-ray diffraction
[QE]	Quantum efficiency
[RE]	Rare earth
[RYF]	$\text{RbY}_3\text{F}_{10}$
[SEF]	Sr_2EuF_7
[SGF]	Sr_2GdF_7
[SGEF]	$\text{Sr}_2\text{Gd}_{0.2-x}\text{Eu}_{0.8}\text{F}_7$
[SLF]	Sr_2LaF_7
[TEM]	Transmission electron microscopy
[VinaR]	VinaR, i.e. Vinca Repository is a joint digital repository of all laboratories and departments in Vinča Institute of Nuclear Sciences, University of Belgrade. VinaR provides open access to the publications, as well as other outputs of the research projects implemented in these institutions.
[VINS]	"Vinča" Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
[WP]	Work package
[Zenodo]	Zenodo is a catch-all research data repository that enables researchers, scientists, EU projects, and institutions to share research results, make research results citable and search and reuse open research results from other projects. Zenodo repository is harvested by the OpenAIRE portal and hosted by the CERN cloud infrastructure.

1. Introduction

The LEDtech-GROW project (Grant Agreement No. 10412, PROMIS 2023) is implemented at the "Vinča" Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, and is dedicated to the development of advanced LED technologies tailored for indoor plant cultivation. The project focuses on innovative phosphor-converted LED (pc-LED) systems based on bismuth-sensitized Eu³⁺-activated single-component fluoride phosphors, designed to emit light across the full Photosynthetically Active Radiation (PAR) spectrum and efficiently stimulate plant photoreceptors.

This report provides a comprehensive overview of the implementation and outcomes of the LEDtech-GROW project across all work packages, covering scientific, technological, dissemination, and capacity-building activities. It consolidates the key results achieved within Work Packages WP1–WP4, including the synthesis and characterization of novel Eu³⁺- and Bi³⁺/Eu³⁺-activated phosphors, the fabrication and performance assessment of plant-grow-targeted LED devices, structured professional development of young and early-stage researchers, and systematic dissemination, communication, and exploitation actions.

Within WP1, significant efforts were devoted to the design, synthesis, and comprehensive characterization of inorganic fluoride phosphors optimized for horticultural lighting. Structural, morphological, optical, and temperature-dependent photoluminescence studies enabled the identification of phosphor compositions with suitable emission profiles, chemical and temperature stability, and energy-transfer mechanisms. These materials served as the foundation for WP2, where novel LED fabrication strategies combining near-UV and UV semiconductor chips with single-component phosphors were developed. Detailed analyses of photoluminescence behavior, colorimetric parameters, luminous performance, and emission overlap with absorption spectra of plant photoreceptors demonstrated the strong potential of several fabricated LEDs for indoor horticultural applications.

In parallel with scientific and technological development, the project placed strong emphasis on visibility, dissemination, and open science. Through WP4, the project established key communication and visibility tools early in its implementation, including the official project website, logo, and promotional materials, ensuring a consistent project identity and broad public accessibility. Scientific publications, datasets, and public deliverables were systematically disseminated through internationally recognized repositories and communication channels.

Furthermore, WP3 played a central role in strengthening the professional development of young and early-stage researchers involved in LEDtech-GROW. Targeted trainings, workshops, webinars, international collaboration activities, and short-term research visits enhanced competencies in proposal writing, project management, intellectual property protection, open science, and advanced experimental techniques. These activities not only supported the successful execution of the project but also ensured long-term sustainability and future funding readiness.

Overall, this report demonstrates that LEDtech-GROW has been implemented in a timely, coherent, and impactful manner. By integrating innovative materials research, advanced LED fabrication, dissemination activities, and researcher capacity building, the project makes a significant contribution to the development of plant-growth-targeted lighting technologies and highlights the importance of interdisciplinary research in addressing current challenges in sustainable agriculture and energy efficiency.

2. Summary of Deliverable D4.1 – Visibility: Website, Logo, and Leaflet (WP4, month 4)

Deliverable **D4.1**, entitled “Visibility: Website, Logo, and Leaflet,” was completed before the fourth month of the project implementation, fully in accordance with the project timeline. This deliverable focused on establishing a strong and coherent visual identity and communication infrastructure for the LEDtech-GROW project. The project website was designed, launched, and made publicly accessible at <https://ledtechgrow-promis.org/>, serving as the central platform for project visibility, dissemination of results, and communication with the scientific community and the wider public. The website is available in English.

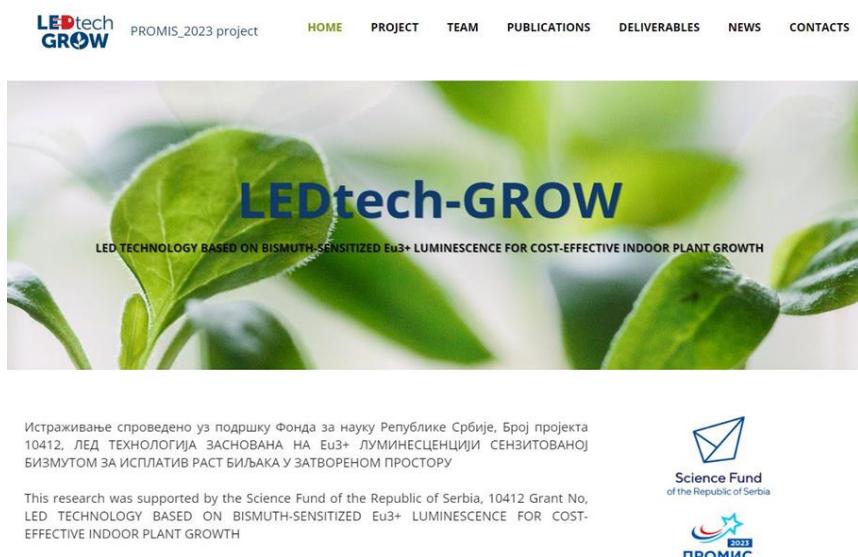


Figure 1. LEDtech-GROW project

In addition, the official project logo and promotional leaflet (<https://ledtechgrow-promis.org/gallery/LEDtech-GROW-Leaflet.pdf>) were developed to ensure consistent branding across all dissemination materials and communication channels. The timely completion of Deliverable D4.1 significantly contributed to the early visibility and recognition of the LEDtech-GROW project at both national and international levels.

Figure 2. LEDtech-GROW logo

3. Summary of Deliverable D4.2 – Data Management Plan (WP4, month 6)

Deliverable **D4.2** – Data Management Plan (DMP) was completed and submitted on 1 July 2024, ahead of the contractual deadline of 2 July 2024, corresponding to **Month 6** of the LEDtech-GROW project implementation. Deliverable 4.2 was developed within **Work Package 4** (Management, communication, dissemination, and exploitation), under **Task 4.2** – Dissemination, communication, and exploitation of knowledge, and was released as a publicly accessible document.

The **DMP** establishes a comprehensive and project-specific framework for the management of all data generated, collected, and processed throughout the entire duration of the LEDtech-GROW project. It is fully aligned with the European Commission Guidelines on Data Management in Horizon 2020, the FAIR data principles, and the contractual obligations defined in Articles 28 and 29 of the Grant Agreement between the Science Fund of the Republic of Serbia and the Vinča Institute of Nuclear Sciences (Grant Agreement No. 10412).

At the time of delivery, the DMP documented data management practices already being actively implemented during the execution of **WP1**, which focused on the design, synthesis, and characterization of plant-growth-targeted phosphors, and laid the groundwork for the systematic handling of forthcoming datasets from **WP2**, dedicated to LED fabrication and performance evaluation.

A key element is a clearly defined open-access and data-sharing strategy. The DMP specifies that all non-confidential project outputs, including scientific publications, underlying datasets, public deliverables, and dissemination materials, are to be made openly available through established, internationally recognized repositories. The **Zenodo repository**, operated by CERN and integrated within the OpenAIRE infrastructure, is designated as the primary platform for archiving open-access datasets and publications, ensuring long-term preservation, assignment of Digital Object Identifiers (DOIs), version control, and global discoverability.

In parallel, all open-access scientific publications and selected research outputs are deposited in the **VinaR repository**, which serves not only as an institutional repository of the Vinča Institute of Nuclear Sciences but also as a fully open, interoperable, and internationally visible research repository. VinaR provides unrestricted global access to deposited content, supports metadata harvesting, and ensures long-term accessibility beyond institutional boundaries, thereby significantly enhancing the visibility and citation potential of LEDtech-GROW research outputs.

Figure 3. Zenodo and VinaR repositories are used for datasets.

Public deliverables, dissemination materials, project news, and links to deposited datasets and publications are additionally made available through the official **LEDtech-GROW project website** (<https://ledtechgrow-promis.org/>). By Month 6, the website had been fully launched and regularly updated, serving as a central dissemination hub for the project. It is planned to remain active throughout the project lifetime and for at least one year following project completion, ensuring sustained public access to project outputs.

The DMP also clearly distinguishes between open and restricted datasets. Data associated with scientific publications, dissemination activities, and non-commercial research findings are made openly accessible in accordance with FAIR principles. Conversely, datasets with high innovation potential or relevance for future commercialization are temporarily excluded from open access to prevent compromising intellectual property protection. Such datasets are securely stored on the ASANA internal project platform, accessible exclusively to LEDtech-GROW team members. The DMP defines concrete procedures for handling sensitive data, including the application of non-disclosure agreements, publication embargoes, and, where appropriate, the preparation of patent applications before public disclosure.

Deliverable D4.2 provides detailed guidance on data formats, metadata standards, naming conventions, licensing schemes, and versioning rules, ensuring consistency, interoperability, and reproducibility of project data. Rich metadata, including project acronym, grant number, authorship, experimental context, and licensing information, accompany all datasets deposited in Zenodo and VinaR.

Clear roles and responsibilities are defined within the DMP. Each project member is responsible for the quality, accuracy, and proper documentation of the data they generate, while overall coordination, compliance monitoring, and updates of the DMP are managed by the Principal Investigator and the project management team at the Vinča Institute of Nuclear Sciences. Costs related to open-access publishing, data archiving, and dissemination were anticipated and allocated within the approved project budget.

In conclusion, Deliverable D4.2 was delivered timely, providing a transparent framework for data management in LEDtech-GROW. By combining trusted international repositories (Zenodo), a fully open and globally visible institutional repository (VinaR), and an actively maintained project website and social media channels, the DMP ensures maximum visibility, accessibility, and long-term preservation of project results, while simultaneously safeguarding sensitive data and supporting future exploitation and innovation activities.

Annexes of Deliverable D4.2

Annex I

Expected Data File Extensions in LEDtech-GROW

File ext.	Description	Editing software
dat	Generic data file	Text editors (e.g. Notepad)
txt	Text file	Text editors (e.g. Notepad)
doc	Text file	MS Word
xls	Spreadsheet	Spreadsheet software (e.g. MS Excel)
cvs	Spreadsheet	Spreadsheet software (e.g. MS Excel)
jpg	Raster image	Standard image viewers
png	Raster image	Standard image viewers
tif	Raster image	Standard image viewers
nb	Code	Wolfram Mathematica
xml	Code	XML editors
m	Code	Mathworks Matlab
pdf	Portable document format	Standard PDF viewers
zip	Archive file format	Standard file archivers
rar	Archive file format	Standard file archivers

4. Summary of Deliverable D4.3 – Dissemination, communication, and exploitation plan (WP4, month 9)

This document constitutes Deliverable D4.3 – Dissemination, Communication, and Exploitation Plan, prepared within Work Package 4 (WP4): Management, Communication, Dissemination, and Exploitation of the LEDtech-GROW project. The initial version of this document was prepared and submitted in Month 9 (October 2024), and the final version was completed in Month 24 (December 2025), fully in line with the project timeline and contractual obligations.

The LEDtech-GROW project focuses on the development of advanced LED technologies for indoor plant growth, based on bismuth-sensitized Eu³⁺-activated single-component phosphors emitting across the entire PAR spectrum of plant photoreceptors. Due to the strong scientific, technological, and societal relevance of the project, dissemination and communication activities represent a core component for ensuring visibility, transparency, and broad accessibility of project results.

Deliverable D4.3 provides a comprehensive and project-specific overview of all dissemination and communication activities implemented to date. The document builds directly upon previously completed visibility-related deliverables, particularly Deliverable D4.1 (Visibility: Website, Logo, Leaflet), which was achieved on time during the early project phase. These tools established a consistent and recognizable project identity and enabled early and continuous outreach to target audiences.

A central dissemination channel of the LEDtech-GROW project is the official project website (<https://ledtechgrow-promis.org/>), which functions as the main public platform for presenting project objectives, work packages, team members, news, public deliverables, scientific outputs, and dissemination materials. The website is regularly updated and serves as a repository for publications, conference contributions, newsletters, promotional materials, and announcements of public and scientific events. It ensures full visibility of the project, extending beyond institutional promotion to include concrete scientific results, researcher activities, and training outcomes.

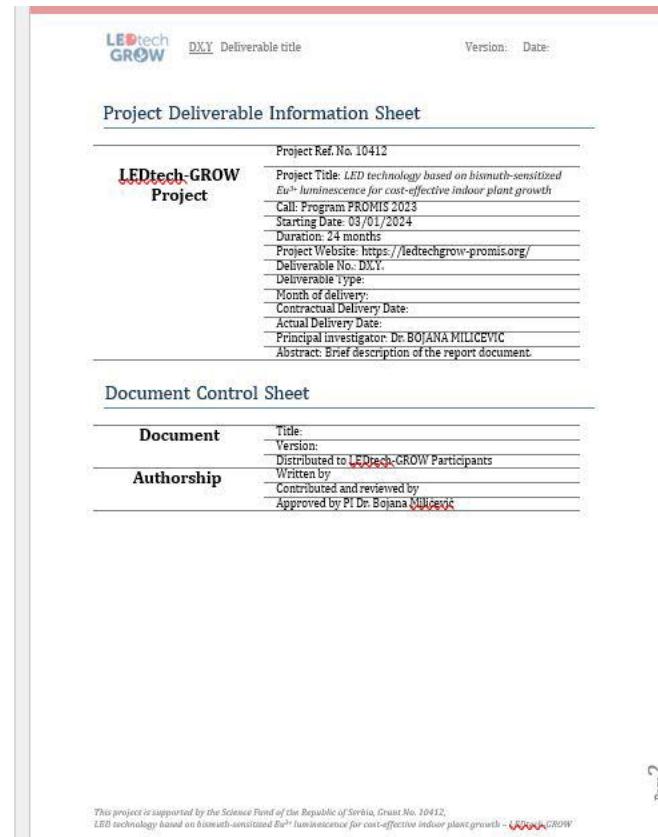
In parallel, the project maintains an active presence on social media platforms, including LinkedIn and Instagram, which are used to communicate project findings, conference participation, published papers, outreach events, and educational activities. These channels significantly enhance real-time communication with the scientific community, early-stage researchers, and the general public, and contribute to increasing recognition of the LEDtech-GROW project at national and international levels.

The dissemination strategy described in Deliverable D4.3 places strong emphasis on scientific dissemination through high-quality peer-reviewed publications and conference participation. In the first year of the project, team members published multiple scientific papers in internationally recognized journals in materials science, optics, and nanotechnology (Annex VI). In parallel, the team actively participated in numerous international scientific conferences, delivering invited talks, oral presentations, and poster contributions, thereby ensuring direct knowledge exchange with the international scientific community (Annex VII). Detailed lists of publications and conference contributions are continuously updated on the project website.

In addition to scientific dissemination, Deliverable D4.3 highlights public outreach and science communication activities carried out by the LEDtech-GROW team. These include participation in major public events such as the European Researchers' Night, the International Fair of Techniques and Technical Achievements, and institutional events organized by the Science Fund of the Republic of Serbia. Promotional materials, including the project leaflet and posters, were actively used to communicate project goals and results to non-specialist audiences, with a particular focus on broader public interested in sustainable agriculture and advanced lighting technologies.

Furthermore, the deliverable presents media visibility achieved through press releases and published articles in national magazines, which contributed to increasing awareness of LEDtech-GROW beyond the scientific community (Annex IV). These activities ensured that the project reached diverse audiences and reinforced the societal relevance of research on energy-efficient and plant-growth-targeted LED technologies.

An important component of the dissemination and communication activities addressed in Deliverable D4.3 is the professional development of young and early-stage researchers. The document reports participation of team members in numerous specialized training events, workshops, webinars, and information days related to scientific publishing, project management, open science, data management, and advanced characterization techniques (Annex VII).

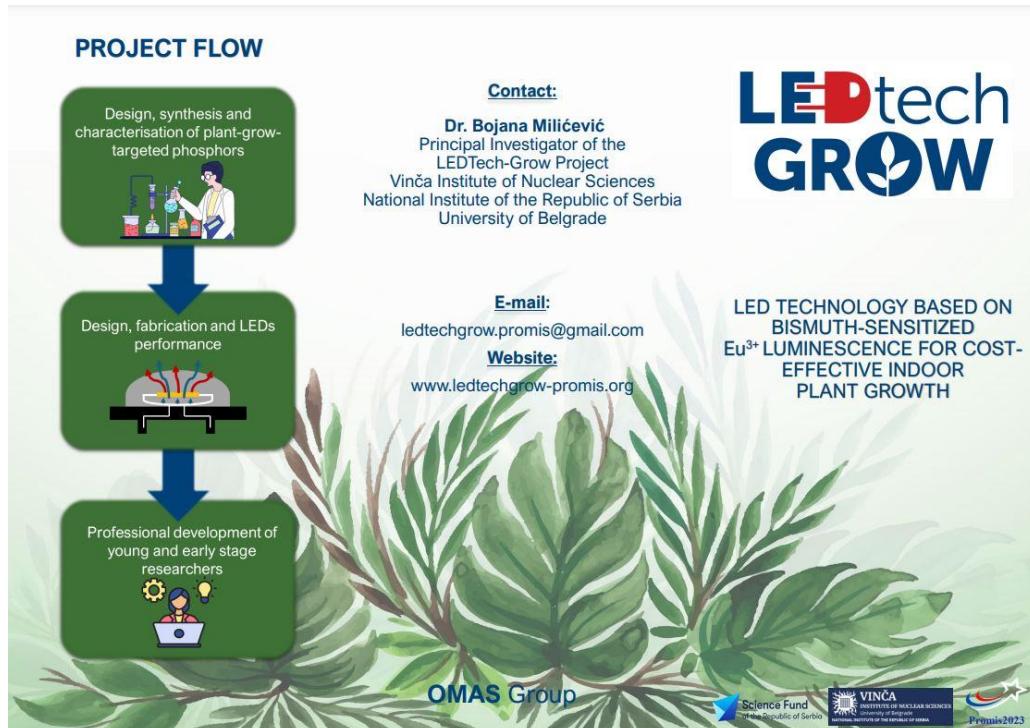

Overall, Deliverable D4.3 demonstrates that dissemination and communication within the LEDtech-GROW project are systematic, timely, and strongly integrated with scientific and outreach activities. By combining a well-structured web presence, active social media engagement, intensive scientific dissemination, public outreach, and continuous researcher training, the project ensures full visibility and effective communication of its results. This approach significantly contributes to maximizing the scientific, educational, and societal impact of LEDtech-GROW during the project implementation and beyond.

Annexes of Deliverable D4.3

Annex II

Microsoft Word (a) and Microsoft PowerPoint (b) documents created to be used in LEDtech-GROW Project

a)


Page 2

b)

Annex III

Leaflet, deliverable D4.1 (WP4), April 2024

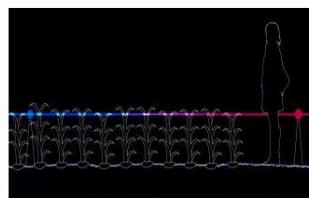
PROJECT

In light of global urbanization, the key to long-term agricultural development is a more efficient use of arable land, labor, and modern technology.

Indoor plant factories are promising solutions for future horticulture production and food supply to densely populated urban areas. The light-emitting-diode (LED) is revolutionizing general illumination with the promise of enormous energy savings when widespread adoption occurs.

However, current LED technologies for plant cultivation are less developed compared to LEDs for general lighting. LEDtech-GROW offers innovation in the field of LEDs that entirely satisfy the needs of plants and cannot be achieved with any LED technology currently available.

We will develop inorganic phosphors that convert as much electrical energy as possible into a Photosynthetically Active Radiation (PAR) spectrum of plant photoreceptors.



Objective 1

The development of high-efficient and moisture-resistant plant-grow-targeted single-component phosphors based on double- and triple-wavelength emission for the whole PAR spectrum.

Site substitution engineering will be implemented via suitable and efficient energy transfer between $\text{Bi}^{3+} \rightarrow \text{Eu}^{3+}$ to adjust the multi-color emission of phosphors.

A unique green synthesis based on environmentally acceptable components will be used.

LEDtech-GROW project results will contribute to the development of improved inorganic phosphors and LED technologies for other applications where efficient, high-quality lighting is crucial.

The focus is on the issues in the field of materials science, such as resemblances of emission spectra of phosphors to the PAR spectrum of plant photoreceptors and fabrication of novel generation of plant-growth-LEDs.

Objective 2

The fabrication of LED devices based on dual- and triple-wavelength emitting single-component phosphors.

To fabricate the pc-LEDs, two distinctive strategies will be employed:

1. The novel LED chip-on-board fabrication strategy that combines near-UV semiconductor chip and representative triple-wavelength emitting plant-grow-targeted single-component phosphor, and
2. A strategy that combines blue semiconductor chips and representative red and far-red double-wavelength emitting single-component phosphors, which is a common way of white LEDs chip-on-board fabrication.

The outcomes of this project activity can be used to develop new innovative technologies beyond the proposed LED technology for artificial indoor plant growth.

Annex IV

Article published in Movem magazine, May 2024.

Bojana: Tako je. Jedinstvenost projekta LED-Tech-GROW leži u njegovu pristupu za dovođenje u potpuno zatvoren prostor u kojem se isključivo primenjuje fotonost, koji emituju fosforini materijali. Ova tehnologija se pokazala izuzetno efikasnima, naročito u svetu s većim klimatskim promenama, sada i potraži koga svi vidi ugrožavaju obradivo zemljište.

**DODATNI KLJUČNI ELEMENT PROJEKTA JE FOSFORNA
DOPUNA Svetlosti, NE KORISTE SE VESTRACKA
DUBIRIVA NI I HEMIKALIJE, VEĆ SE FOVUS STAVLJA NA
STVARANJE OPTIMALNIH USLOVA ZA RAST BILJAKA.**

Bojana: I believe that we somehow share the same views about this issue?

Bojana: That's right. The uniqueness of the LED-Tech-GROW project lies in the fact that it lights up in a completely enclosed space using only natural light emitted by phosphorus materials. This technology has proven to be extremely effective, especially in the light of increasingly frequent climate changes, droughts and fires that are increasingly threatening arable land.

**ISKLUJUĆIVO UZ POMOĆ PRIRODNE SVETLOSTI, OVO
NJE SAMO EKOLOŠKI PRIVLATLJIV PRISTUP, VEĆ
I NAUKANAC NAIN ČA SE OBZEBED DOVOLNO
HRANE ZA SVE VECI BROJ STANOVNIKA PLANETE.**

Marina: Ako se varam, fosfor je istinski element koji emituje svetlost. Ali kako ga možemo „izdresiti“ tako da ga ne potroši bilo u onakvih karakteristika koje su nam potrebne?

Bojana: Jedna od ključnih karakteristika fosforne materijala koje se koriste u ovom projektu je njihova stabilitet u visokom vlažnom i vrućem vremenu, bez svađa. Kroz analize izrađivane su utvrdi da su crvena i plava boja najkorisnije biljkama jer ih apsorbuju hlorofil i drugi bijeli fotoreceptori. To znači da biljke mogu efikasnije da apsorbuju svetlost i da brže rastu, što rezultira većim prinosima.

MARINA, NI PREZ TOBOM NIJE LAK ZADATAK, ZAR NE?

Marina: Veoma je važno istaći da su vakcine koje prizilaze iz ovog istraživanja bezbedne. Rezultati studije

**ANOTHER KEY ELEMENT OF THE PROJECT IS THE
FACT IT IS COMPLETELY NATURAL. NO ARTIFICIAL
FERTILIZERS OR CHEMICALS ARE USED, BUT THE
FOCUS IS ON OPTIMIZING PLANT LIGHTING FOR
PLANT GROWTH USING ONLY NATURAL LIGHT. THIS
IS NOT ONLY AN ENVIRONMENTALLY FRIENDLY
APPROACH, BUT ALSO AN EFFECTIVE WAY TO
PROVIDE ENOUGH FOOD FOR THE EVER-INCREASING
POPULATION IN OUR PLANET.**

Marina: If I'm not mistaken, phosphorus is a natural element, so how can we use it? How can we "train" it so that light has exactly the properties we need?

Bojana: One of the key characteristics of the phosphorus materials used in this project is their ability to remain stable in high humidity and high temperatures. Through analyses carried out, it was determined that the researchers determined that red and blue are the most useful colours for plants, because they are absorbed by chlorophyll and other plant photoreceptors. This means plants can absorb light more efficiently and grow faster, resulting in higher yields.

če značajno unaprediti efikasnost i bezbednost vakačina, uz mogućnost modifikacije procesa autotrafage radi bolje delovnosti budućih vakačina, tako se radi o bazičnom istraživanju, otkruje se da će rezultati imati veliki uticaj na kliničku prakticu i na učinkovitost lečenja bolesti. Činjenica je da ovo istraživanje predstavlja atraktivni pristup za prevenciju infektivnih bolesti, ali takođe ima veliki potencijal i za terapiju protiv tumora.

**ONO ŠTO JA MOGU DA ZAKLJUČIM JESTE DA SU U
NAUCI SVE VIŠE PRISUTNA ISTRAŽIVANJA U KOJIMA
SE UČIĆE IZ KOGA SE VAKCINE IZRAZAVAJU, TO JE
SLUČAJ I SA OVIM NA CENU TI RADIMO.**

Marina: Projekat EnviroChar je jedan veliki multidisciplinarni poduhvat koji okuplja stručnjake iz različitih oblasti hemije što omogućava holistički pristup problemu. Uzimajući u obzir činjenicu da je ova vrsta istraživanja ključna za budžetu budućnosti, projekt EnviroChar predstavlja primer kako naučna mreže može proučavati rešenja za razne razne teme.

**A TI EGZOKOLOGIJA KOGA PREDSTAVLJAJU DODATNI
MOTIV ZA TEBE, BOJANA, JE L' TAKO?**

Bojana: Tako je. Pored toga što doprinože rastu

**MARINA, YOUR TASK DOES NOT SEEM EASY EITHER,
DOES IT?**

Bojana: It is very important to point out that the values resulting from this research are that the results of the study will significantly improve the efficiency and safety of vaccines, with the possibility of modifying the autotransfusion process for better efficiency of future vaccines. Although this is basic research, the results will have a major impact on clinical practice and population health improvement. The fact is that this research represents an attractive approach for the prevention of infectious diseases and also has potential for tumor therapy.

**WHAT CAN CONCLUDE IS THAT THERE IS MORE AND
MORE RESEARCH IN SCIENCE INVOLVING DIFFERENT
FIELDS, JELENA, THAT IS ALSO THE CASE WITH WHAT
YOU ARE WORKING ON?**

Jelena: The EnviroChar project is a large-scale multidisciplinary undertaking that brings together experts from different chemistry disciplines, which enables a holistic approach to the problem. Considering that this research is basic research that will have a sustainable future, the EnviroChar Project is an example of how science can provide innovative solutions to current environmental challenges.

MARINA, NI PREZ TOBOM NIJE LAK ZADATAK, ZAR NE?

Marina: Veoma je važno istaći da su vakačine koje prizilaze iz ovog istraživanja bezbedne. Rezultati studije

prizilaze

KLJUČ ZA DUGOROČNI RAZVOJ POLJOPRIVREDE

REVOLUCIJA U TEHNOLOGIJI LED RASVETE ZA UZGOJ BILJAKA

DR BOJANA MILIČEVIĆ, VIŠI NAUČNI SARADNIK INSTITUTA ZA NUKLEARNE NAUKE „VINČA“, UNIVERZITETA U BEOGRADU

U kontekstu globalne urbanizacije ključ za dugoročni razvoj poljoprivrede je efikasnije korišćenje obradivih površina, radne snage i moderne tehnologije. Zatvorene fabrike za uzgoj biljaka se sve više nameću kao obećavajuće rešenje u okviru moderne poljoprivrede i snabdevanja hranaom gusto naseljenih urbanih područja. Revoluciju u oblasti rasvete predstavlja LED tehnologija koja pruža mogućnost ogromne uštede energije, međutim trenutne LED tehnologije za uzgoj biljaka nisu razvijene kao one za opštu rasvetu.

U Centru izuzetnih vrednosti za konverziju svetlosne energije – CONVERSE, u Institutu za nuklearne nauke Vinča, Institutu od nacionalnog značaja za Republiku Srbiju, Univerziteta u Beogradu, tim stručnjaka predvodjenim dr Bojanom Miličevićem radi na projektu pod nazivom „LED tehnologija zasnovana na Eu³⁺ luminescenciji senzitivnoj bismutom za isplativi rast biljaka u zatvorenom prostoru - LEDtech-GROW“, razvija savremenu i efikasnu LED rasvetu za uzgoj biljaka kao ključno rešenje za uspešnu buduću proizvodnju u zatvorenim uslovima.

Projekat LEDtech-GROW donosi inovacije u oblasti LED tehnologije, koje su specijalno prilagođene potrebama biljaka. LEDtech-GROW planira razvoj neorganskih materijala koji će efikasno pretvarati električnu u svetlosnu energiju koja je specifična za fotosintetske procese kod biljaka, što je različito od svetlosti potreбne za opštu rasvetu.

Kako LED svetla mogu spasiti poljoprivredu: novi pristupi za održivu proizvodnju hrane u uslovima rastuće urbanizacije

Prema procenama Organizacije za hranu i poljoprivredu Ujedinjenih nacija, očekuje se da će svetska populacija

u narednih 30 godina porasti za dve milijarde, sa trenutnih 7,7 milijardi na 9,7 milijardi do 2050. godine. Ovaj rast ima ozbiljne posledice na ravnotežu između rastuće populacije i obradivih površina. Prema trenutnim procenama, količina obradivih površina po osobi u svetu drastično opada, smanjujući se sa 0,38 hektara u 1970. godini na 0,23 hektara u 2000. godini, s predviđenim padom na samo 0,15 hektara po osobi do 2050. godine.

Poljoprivredu u 2050. godini trebalo bi da proizvede oko 50 odsto višu hrane, stočne hrane i bioenergije nego u 2012. godini, kao i da snabdeva urbanizovana područja na isplativ način. Ključno pitanje je da li današnja poljoprivreda i snabdevanje hrana mogu zadovoljiti buduće potrebe uzimajući u obzir rastuće pritiske na već ograničene obradive

površine, kao i intenziviranje negativnih posledica klimatskih promena.

Inovacije kao ključ za održivu poljoprivredu

Inovacije su neophodne ne samo za poboljšanje efikasnosti u pretvaranju dostupnih resursa u proizvod, već i za očuvanje ograničenih prirodnih resursa. Zatvorene fabrike za uzgoj biljaka sa veštačkom svetlošću predstavljaju obećavajuća rešenja za buduću poljoprivrednu proizvodnju. Trenutne strategije veštačke rasvete bazirane na plavim i crvenim LED svetlima imaju nedostatke kao što su odvojeno napajanje, nesklad u spektralnoj distribuciji i promena boje sa promenom snage. Stoga je kontrolisani LED izlaz koji odgovara spektru fotosintetskog aktivnog zračenja biljnih fotoreceptora neophodan u zatvorenim fabrikama i staklenicima zbog svog potencijala da poboljša prinos i ubrza procese rasta biljaka u odsustvu sunčeve svetlosti.

Napredak u razvoju neorganskih materijala za LED rasvetu

Naučni timovi se suočavaju sa značajnim izazovima u razvoju materijala koji se koriste za LED osvetljenje, s obzirom na potrebu za optimizacijom svetlosnog spektra koji stimuliše rast i razvoj biljaka. Istraživanja u ovoj oblasti su pokazala da neorganski materijali, kao što su aluminati, garneti i perovskiti, aktivirani četvorovalentnim jonima mangana pokazuju nisku kvantu efikasnost (manje od 50 odsto) i široku emisiju u dubokim crvenim talasnim dužinama, što smanjuje efikasnost LED svetla i ne zadovoljava spektralne zahteve biljaka. Sa druge strane, fluoridni materijali aktivirani jonima mangana su pokazali značajno veću kvantu efikasnost, međutim, njihova sinteza je izuzetno opasna, a nedostatak duboke-crvene emisije ne može dovoljno stimulisati fitohromne fotoreceptore biljaka. Takođe, poznato je da fluoridni materijali aktivirani jonom mangana nisu stabilni u vlažnim okruženjima, kao što su staklenici i zatvorene fabrike za uzgoj biljaka, zbog njihove sklonosti ka hidrolizi i stvaranju mangan-oksida i hidroksida. Kao rešenje, istraživači se okreću materijalima

aktiviranim trovalentnim jonima europijuma koji nude visoku stabilnost, efikasnost i uske crvene i narandžaste emisione linije, dok u specifičnim slučajevima može doći i do emisije intenzivne duboko-crvene svetlosti koja je neophodna za razvoj biljaka u zatvorenim fabrikama i staklenicama. Nedavne studije su pokazale da se može ostvariti do 20 odsto uštede energije za bele LED diode korišćenjem europijum-aktiviranih nanočestica.

LEDtech-GROW projekat ima za cilj razvoj materijala na nano i submikronskoj skali sa preciznom kontrolom optičkih svojstava putem prenosa energije, što otvara brojne mogućnosti za sledeću generaciju LED svetala specijalizovanih za uzgoj biljaka. Ova tehnologija koristi plave emitere - jone bismuta, kao i crveno i duboko-crvene emitere - jone europijuma, omogućavajući optimalnu ravnotežu između apsorpcije, emisije i prilagodljivosti spektralnog oblika, pokrivajući ceo spektar fotosintetski aktivnog zračenja biljnih fotoreceptora. Neorganski materijali koji kombinuju plavu emisiju koja potiče od jona bismuta sa jedinstvenom crvenom i dubokom crvenom emisijom jona europijuma povećavaju svetlosni izlaz za fotoreceptore, kao što su kriptoohromi i fitohromi, dok istovremeno obezbeđuju visoki kvalitet boje. Da bi se postigla optimalna višebojna emisija materijala neophodan je i efikasan prenos energije između jona bismuta i europijuma.

Materijali koji su pažljivo odabrani pokazuju snažnu emisiju zbog visoke koncentracije aktivatorskog jona, otpornost na vlagu, što je od sušinskog značaja u zatvorenim fabrikama i staklenicama zbog visokih vlažnosti u kojima funkcionišu, i precizno uskladjivanje sa fotosintetski aktivnim spektrom zračenja, što je ključno za kontrolu biljnih metaboličkih procesa, rasta, cvetanja i količine biljnih priloga.

Poboljšanje efikasnosti i stabilnosti svetlosnih izvora u vlažnim i zahtevnim uslovima

Tradicionalna LED rasveta koristi poluprovodničke čipove na bazi galijum ili galijum-indijum nitrida u kombinaciji sa neorganskim materijalima za konverziju svetlosti, što omogućava

proizvodnju vidljive svetlosti. Pomenuti materijali apsorbuju deo plave ili bliske ultraljubičaste svetlosti i emituju svetlost na većinu talasnim dužinama. Najčešće, za proizvodnju belih LED svetala koristi se plavi poluprovodnički čip, žuti i crveno emitujući neorganski materijali. Sličan pristup se koristi i za proizvodnju LED svetala namenjenih uzgoju biljaka. Međutim, prilikom upotrebe LED svetala pobudenih plavim čipovima može doći do neslaganja u bojama što daje može uticati na efikasnost rasvete za biljke.

Istraživanja u okviru LEDtech-GROW projekta obuhvataju kombinovanje poluprovodničkog čipa baziranog na bliskom ultraljubičastom svetlu i neorganskih materijala aktiviranih jonom bismuta i europijuma koji emituju plavu, crvenu i duboko-crvenu svetlost, a koji su sintetisani u našoj laboratoriji. Plava emisija stimuliše fotoreceptore kao što su kriptoohromi i fitohromi, uska crvena i duboko-crvena emisija fitohromne fotoreceptore, dok se celokupna emitovana svetlost poklapa sa apsorpcionim spektrom hlorofila a i b. Korišćenjem ove tehnologije i sam čip emituje male količine bliske ultraljubičaste svetlosti koja može stimulisati pterin fotoreceptore i poboljšati cirkadijalni ritam i fototropizam biljaka.

Uticaj na održivu poljoprivrednu i bezbednost hrane

LEDtech-GROW nudi rešenja u pogledu dizajniranja LED svetla koja direktno utiču na ubrzani razvoj biljaka i povećanje njihovog prinosu u zatvorenim fabrikama i staklenicama. Usled klimatskih promena, kao što su rastuće temperaturе i sve učestalije suše, požari i invazije štetnočina, dolazi do gubitka biljnih vrsta i povećane potražnje za hranom. Naš projekat radi na razvoju LED tehnologije čiji je potencijal da obezbedi neometan razvoj biljaka u zatvorenim sistemima, smanjenje potreba za pesticidima i dubrivima, kao i izloženost radnika opasnim hemijskim agensima. Ujedno, manja potrošnja vode i hemikalija u proizvodnji hrane takođe doprinosi očuvanju životne sredine i poboljšanju nutritivnog kvaliteta i bezbednosti hrane.

Projekat LEDtech-GROW, finansiran kroz Program PROMIS 2023 Fonda za

Primer LED svetala namenjenih uzgoju biljaka

nauku Republike Srbije, predstavlja značajan iskorak u modernizaciji poljoprivrede i očuvanju životne sredine. Ovaj inovativni projekt fokusira se na napredne aspekte nauke o materijalima, istražujući kako se emisioni spektri sintetisanih neorganskih materijala uskladjuju sa fotosintetski aktivnim zračenjem biljnih fotoreceptora, te na razvoj nove generacije LED svetala koja su posebno dizajnirana za poboljšanje rasta biljaka u odustvu sunčeve svetlosti. U budućnosti, naš rad će se usmeriti na unapređenje metoda uzgoja biljaka i sveobuhvatno praćenje njihovog razvoja.

Planiramo da istražimo nove pristupe u tehnologiji uzgoja, uključujući optimizaciju uslova rasta, poboljšanje hranljivih materija i primenu naprednih tehnika za kontrolu okoline. Naš nastojanja će uključivati saradnju sa stručnjacima iz različitih oblasti, uključujući agrofizike, biotehnologe i inženjere, kako bismo integrisali najnovija saznanja i tehnologije u naš rad. Cilj nam je da stvorimo efikasne i održive metode uzgoja koje će omogućiti bolje rezultate u poljoprivredi i doprineti ukupnom poboljšanju proizvodnje hrane, čime ćemo dodatno podržati održivu poljoprivredu i zaštitu životne sredine. ■

Annex V

Poster presentation for the youth population at the 15th European Researchers' Night, September 2024.

Annex VI

List of scientific publications – regularly updated in the DCE Plan and LEDtech-GROW Website

No.	AUTHORS	ARTICLE TITLE	JOURNAL	STATUS
1.	Bojana Milićević, Aleksandar Ćirić, Zoran Ristić, Mina Medić, Abdullah N. Alodhayb, Ivana Radosavljević, Evans, Željka Antić, Miroslav D. Dramičanin	Eu³⁺- activated Sr₂GdF₇ colloid and nano-powder for biomarker and horticulture LED	Journal of Alloys and Compounds (M21a)	Accepted
2.	Katarina Milenković, Ljubica Đačanin Far, Sanja Kuzman, Željka Antić, Aleksandar Ćirić, Miroslav D. Dramičanin, Bojana Milićević	Red emission enhancement in BaYF₅:Eu³⁺ phosphor nanoparticles by Bi³⁺ co-doping	Optics Express (M21)	Accepted
3.	Jovana Periša, Sanja Kuzman, Aleksandar Ćirić, Zoran Ristić, Željka Antić, Miroslav Dramičanin, Bojana Milićević	Tunable red and blue emission of Bi³⁺-codoped SrF₂:Eu³⁺ nanophosphors for agricultural LEDs	Nanomaterials (M21)	Accepted
4.	Bojana Milićević, Aleksandar Ćirić, Katarina Milenković, Zoran Ristić, Jovana Periša, Željka Antić, Miroslav D. Dramičanin	Pr³⁺-Activated Sr₂LaF₇ Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor	Nanomaterials (M21)	Accepted
5.	Ljubica Đačanin Far, Jovana Periša, Ivana Zeković, Zoran Ristić, Mina Medić, Miroslav D. Dramičanin, Bojana Milićević	Tailoring red and deep-red light: Bi³⁺ doped Sr₂Gd_{0.2}Eu_{0.8}F₇ phosphors for next-generation horticultural LEDs	Results in Physics (M21)	Accepted
6.	Ljubica Đačanin Far, Jovana Periša, Zoran Ristić, Anatolijs Šarakovskis, Vladimir Pankratov, Abdullah Alodhayb, Lukasz Marciniak, Sanja Kuzman, Miroslav D. Dramičanin, Bojana Milićević	Eu³⁺-Doped Sr₂LaF₇ Nanopowders as Efficient Red and Deep-Red Emitters for Advanced Horticultural Lighting	Progress in Theoretical and Experimental Physics (M21a)	Submitted
7.	Aleksandar Ćirić, Markus Suta, Tom Förster, Bojana Milićević, Tamara Gavrilović, Željka Antić, Miroslav Dramičanin	Algorithm for Judd-Ofelt analysis of Pr³⁺ from the emission spectrum: case study of Sr₂LaF₇:Pr³⁺ nano-powder	Advanced Optical Materials (M21a)	Submitted

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Annex VII

List of Poster presentations at scientific congresses – regularly updated in the DCE Plan and LEDtech-GROW Website

No.	AUTHORS	PRESENTATION TITLE	CONGRESS	DATE	PLACE
1.	Katarina Milenković, Vesna Đorđević, Sanja Kuzman, Jovana Periša, Bojana Milićević, Miroslav D. Dramičanin	Three-fold enhancement of Eu ³⁺ emission intensity in BaYF ₅ nanoparticles by Bi ³⁺ co-doping	12 th International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (https://www.cfi.lu.lv/en/lumdetr2024/)	June 16-21, 2024	Riga, Latvia
2.	Bojana Milićević, Aleksandar Ćirić, Zoran Ristić, Mina Medić, Ivana Radosavljevic Evans, Željka Antić, Miroslav D. Dramičanin	Synthesis, luminescent properties, and thermal stability of Eu ³⁺ -doped Sr ₂ GdF ₇ red-emitting nanophosphor for horticulture LEDs	The 7 th International Conference on the Physics of Optical Materials and Devices & The 4 th International Conference on Phosphor Thermometry (https://icomonline.org/)	August 26-30, 2024	Bečići, Budva, Montenegro
3.	Sanja Kuzman, Bojana Milićević, Jovana Periša, Aleksandar Ćirić, Zoran Ristić, Željka Antić, Miroslav D. Dramičanin	Synthesis and photoluminescent properties of Bi ³⁺ -codoped SrF ₂ :Eu ³⁺ phosphor nanoparticles	The 7 th International Conference on the Physics of Optical Materials and Devices & The 4 th International Conference on Phosphor Thermometry (https://icomonline.org/)	August 26-30, 2024	Bečići, Budva, Montenegro
4.	Katarina Milenković, Vesna Đorđević, Ivana Zeković, Zoran Ristić, Jovana Periša, Bojana Milićević, Miroslav D. Dramičanin	Microwave-assisted solvothermal method for RbY ₃ F ₁₀ doped with Eu ³⁺	The 7 th International Conference on the Physics of Optical Materials and Devices & The 4 th International Conference on Phosphor Thermometry (https://icomonline.org/)	August 26-30, 2024	Bečići, Budva, Montenegro
5.	Ljubica Đačanin Far, Bojana Milićević, Jovana Periša, Aleksandar	Eu ³⁺ -Doped Sr ₂ LaF ₇ nanopowders for Indoor Plant	6 th International Conference on MATERIALS SCIENCE & NANOTECHNOLOGY	October 27-30, 2025	Tenerife, Spain (pp 119-120).

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Ćirić, Katarina Milenković, Sanja Kuzman, and Miroslav D. Dramičanin	Growth LED Applications	Future Materials 2025 (https://materialsconference.yuktan.com/poster-presenters)		
6. Sanja Kuzman, Ljubica Đačanin Far, Bojana Milićević, Jovana Periša, Aleksandar Ćirić, Katarina Milenković, and Miroslav D. Dramičanin	Emission Enhancement by Bi³⁺ Co-Doping of Red-Emitting nanophosphor for Horticulture LEDs	6 th International Conference on MATERIALS SCIENCE & NANOTECHNOLOGY Future Materials 2025 (https://materialsconference.yuktan.com/poster-presenters)	October 27-30, 2025	Tenerife, Spain (pp 121).

List of Invited and Oral presentations at scientific congresses – regularly updated in the DCE Plan and LEDtech-GROW Website

No.	AUTHORS	PRESENTATION TITLE	CONGRESS	DATE	PLACE
1.	Sanja Kuzman, Bojana Milićević, Katarina Milenković, Jovana Periša, Miroslav D. Dramičanin (Invited talk)	Bismuth-Sensitized Eu³⁺ Luminescent LED Technology for Effective Indoor Plant Growth	The 3 rd Serbian Conference on Materials Application and Technology – SCOM2024 (https://www.razvojnauke.org/)	October 16-18, 2024	Belgrade, Serbia
2.	Aleksandar Ćirić, Markus Suta, Bojana Milićević, Tom Förster, Tamara Gavrilović, Željkoiroslav Antić, M. D. Dramičanin (Oral talk)	Judd-Ofelt Analysis of Pr³⁺: A Direct Emission Spectrum Approach for Advanced LED Phosphors and Scintillators	6 th International Conference on MATERIALS SCIENCE & NANOTECHNOLOGY Future Materials 2025 (https://materialsconference.yuktan.com/featured-speakers)	October 27-30, 2025	Tenerife, Španija (pp 35)

List of general public events

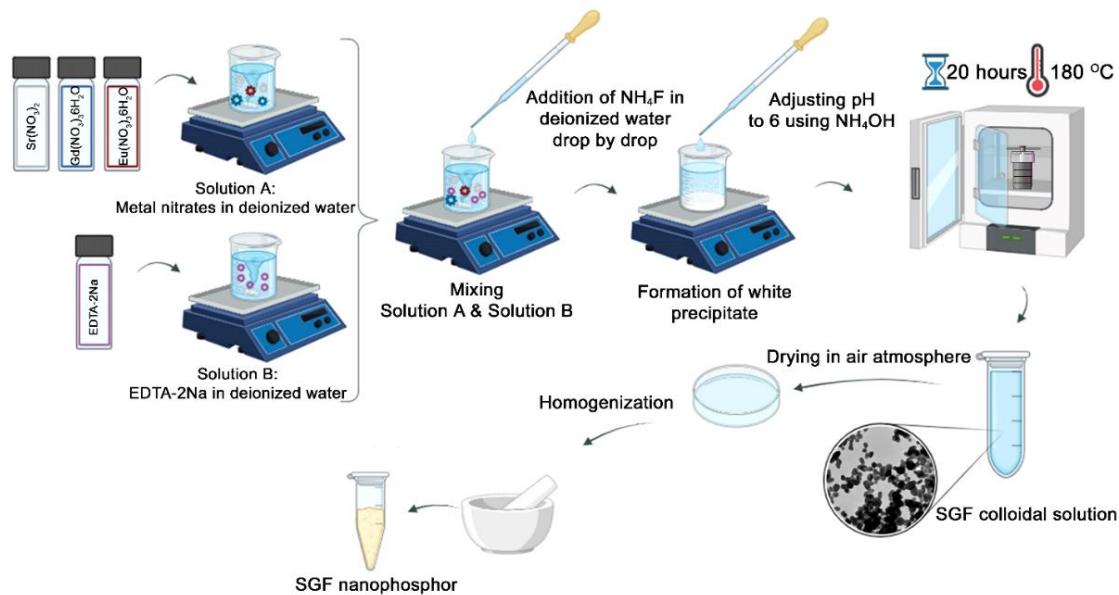
No.	ATTENDEE	PRESENTATION	EVENTS	DATE	PLACE
1.	Bojana Milićević Jovana Periša	Principal investigators of 30 projects supported under the PROMIS 2023 program were presented at the ceremony	The Science Fund celebrated 5 years since its establishment (https://fondzanaku.gov.rs/2024/03/fond-za-nauku-svecano-obelezio-5-godina-od-osnivanja/)	March 20, 2024	Belgrade, Serbia
2.	Jovana Periša	Leaflet and promotional material	The 66 th International Fair of Techniques and Technical Achievements	March 21-24, 2024	Belgrade, Serbia
3.	Bojana Milićević Sanja Kuzman	Revolutionizing LED technology for plant growth	15 th European Researchers' Night, (https://nocistrazivaca.rs/radionice_i_programi/ledtech-grow/)	September 27, 2024	Belgrade, Serbia

List of training events

No.	TRAINING ATTENDEE	TRAINING TITLE	TRAINING ORGANIZED	DATE	PLACE
1.	All team members	How to make the best use unfunded project proposals?	Marija Šola Spasić, coordinator of Management Office projects at Vinca Institute for Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade	February 6, 2024	Online
2.	Ljubica Đačanin Far, Bojana Milićević	Training for preparing, writing, and managing Horizon projects	The European Training Academy (EUTA)	February 22, February 23, February 27, March 1, 2024	Belgrade, Serbia
3.	All team members	Protection of Trade Secrets	The Intellectual Property Office of the Republic of Serbia (Lecturer: Aleksandra Mihailović, Asst. Director)	March 5, 2024	Online

4.	All team members	Introduction to Patents	The Intellectual Property Office of the Republic of Serbia (Lecturer: Nataša Milovanović, Head of the Department for Mechanical Engineering, Electrotechnics and General Technology)	March 12, 2024	Online
5.	All team members	International Protection of Inventions	The Intellectual Property Office of the Republic of Serbia (Lecturer: Aleksandra Mihailović, Asst. Director)	March 19, 2024	Online
6.	All team members	Software protection with a patent	The Intellectual Property Office of the Republic of Serbia (Lecturer: Nataša Milovanović, Head of the Department for Mechanical Engineering, Electrotechnics and General Technology)	March 26, 2024	Online
7.	All team members	Compiling an application for the protection of an invention	The Intellectual Property Office of the Republic of Serbia (Lecturer: Jelena Tomić Keser, Head of the Department for Chemistry and Chemical Technology)	April 2, 2024	Online
8.	Bojana Milićević, Sanja Kuzman	LEDtech-GROW	The European Researchers' Night, Faculty of Physical Chemistry, Belgrade, Serbia	September 28, 2024	Online
9.	Bojana Milićević, Sanja Kuzman, Jovana Periša	Excel Masterclass	Aleksandar Grašić	October 3, 2024	Online
10.	All team members	Introduction to JADE®	International Centre for Diffraction Data (ICDD)	April 23, 2025	Online
11.	All team members	Open Science and Obligations for Participants in the Science Fund of the Republic of Serbia Program	Vinča Institute for Nuclear Sciences, University of Belgrade	May 13, 2025	Belgrade, Serbia
12.	Ljubica Đačanin Far, Jovana Periša, Katarina Milenković	Horizon Europe Info Days – WIDERA Work Programme 2025	European Commission	May 20	Online
13.	Bojana Milićević, Sanja	Horizon Europe Info Days – Cluster	European Commission	May 20, 2025	Online

	Kuzman, Aleksandar Ćirić	6: Food, Bioeconomy, Natural Resources, Agriculture and Environment			
14.	All team members	Powder X-ray Diffraction – Better Data Equals Better Results	International Centre for Diffraction Data (ICDD)	May 21, 2025	Online
15.	All team members	The ICDD Raman File: Design, Content and Applications	International Centre for Diffraction Data (ICDD)	June 25, 2025	Online


5. Summary of Deliverable D1.1 – Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors synthesis (WP1, month 12)

This report (Deliverable D1.1) presents the synthesis of Eu³⁺- and Bi³⁺/Eu³⁺-activated inorganic fluoride phosphors developed within the LEDtech-GROW project under WP1. Detailed descriptions of the synthesis methodologies, tools, and procedures are provided at the project deliverables repository (<https://ledtechgrow-promis.org/Deliverables/>). Below, we focus on a concise overview and summary of all synthesized phosphor materials specifically designed for plant-targeted LED applications in horticulture, ensuring alignment with the scientific objectives and planned activities of WP1.

Synthesis of colloidal and powder Eu³⁺-doped Sr₂GdF₇ nanoparticles – WP1, subactivity 1.2

Table 1 The amounts of precursors needed for synthesizing Sr₂Gd_{1-x}F₇:xmolEu³⁺ samples.

Samples	Sr(NO ₃) ₂ (g)	Gd(NO ₃) ₃ ·6H ₂ O (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F (g)	EDTA (g)
SGF (x=0.00)	1.0582	1.1284	–		
SGF_5Eu (x=0.05)	1.0582	1.0720	0.0557		
SGF_10Eu (x=0.10)	1.0582	1.0156	0.1115		
SGF_40Eu (x=0.40)	1.0582	0.6770	0.4460	1.1111	0.9306
SGF_60Eu (x=0.60)	1.0582	0.4514	0.6690		
SGF_80Eu (x=0.80)	1.0582	0.2257	0.8919		
SEF (x=1.00)	1.0582	–	0.9306		

Figure 4. Schematic illustration of the colloidal and powder SGF:Eu nanophosphors preparation.

Synthesis of powder Bi³⁺-doped Sr₂EuF₇ nanoparticles – WP1, subactivity 1.2

Table 2 The amounts of precursors needed for synthesizing Sr₂Eu_{1-x}F₇:x mol% Bi³⁺.

Samples	Sr(NO ₃) ₂ (g)	Bi(NO ₃) ₃ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F (g)	EDTA (g)
SEF_1Bi (x=0.01)		0.0099	1.1041		
SEF_2Bi (x=0.02)		0.0197	1.0929		
SEF_5Bi (x=0.05)	1.0582	0.0494	1.0595	1.1111	0.9306
SEF_10Bi (x=0.10)		0.0988	1.0037		

Synthesis of powder Bi³⁺-doped Sr₂Gd_{0.2}Eu_{0.8}F₇ nanoparticles – WP1, subactivity 1.2

Table 3 The amounts of precursors needed for synthesizing Bi³⁺-doped Sr₂Gd_{0.2-x}Eu_{0.8}F₇:x mol% Bi³⁺.

Samples	Sr(NO ₃) ₂ (g)	Gd(NO ₃) ₃ ·6H ₂ O (g)	Bi(NO ₃) ₃ (g)	Eu(NO ₃) ₃ · 6H ₂ O (g)	NH ₄ F (g)	EDTA (g)
SGEF_0Bi (x=0.00)		0.1947	-			
SGEF_0.2Bi (x=0.002)		0.1922	0.0025			
SGEF_1Bi (x=0.01)	1.0582	0.1849	0.0099	0.8922	1.1111	0.9306
SGEF_5Bi (x=0.05)		0.1460	0.0494			
SGEF_10Bi (x=0.10)		0.0973	0.0988			

Bi³⁺-doped Sr₂LaF₇ – WP1, subactivity 1.2
Table 4 The amounts of precursors needed for synthesizing Sr₂LaF₇:5mol%Bi³⁺.

Precursors	n [mol]	m [g]
Sr(NO ₃) ₂	0.005	1.05815
La(NO ₃) ₃ ·6H ₂ O	0.002375	1.0284
Bi(NO ₃) ₃	0.000125	0.0494
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

Bi³⁺-codoped Sr₂La_{0.9}Eu_{0.1}F₇ – WP1, subactivity 1.2
Table 5 The amounts of precursors needed for synthesizing Sr₂La_{0.9}Eu_{0.1}F₇.

Precursors	n [mol]	m [g]
Sr(NO ₃) ₂	0.005	1.05815
La(NO ₃) ₃ ·6H ₂ O	0.00225	0.9743
Eu(NO ₃) ₃ ·6H ₂ O	0.00025	0.1115
Bi(NO ₃) ₃	-	-
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

Table 6 The amounts of precursors needed for synthesizing Sr₂La_{0.8}Eu_{0.1}Bi_{0.1}F₇.

Precursors	n [mol]	m [g]
Sr(NO ₃) ₂	0.005	1.05815
La(NO ₃) ₃ ·6H ₂ O	0.002	0.8660
Eu(NO ₃) ₃ ·6H ₂ O	0.00025	0.1115
Bi(NO ₃) ₃	0.00025	0.0988
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

Synthesis of Eu³⁺-doped SrF₂ and Bi³⁺, Eu³⁺-doped SrF₂ nanoparticles – WP1, subactivity 1.1
Table 7. Precursors for synthesis of 1 mmol of SrF₂: x mol% Eu³⁺ (x= 1, 5, 10, 15, 20) samples.

Sample	Abbreviated name	Sr(NO ₃) ₂ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NaF (g)	EG (ml)
Sr _{0.99} Eu _{0.01} F ₂	SrF ₂ :1Eu	0.2095	0.00446		
Sr _{0.95} Eu _{0.05} F ₂	SrF ₂ :5Eu	0.2010	0.0223		
Sr _{0.9} Eu _{0.1} F ₂	SrF ₂ :10Eu	0.1905	0.0446	0.0840	15
Sr _{0.85} Eu _{0.15} F ₂	SrF ₂ :15Eu	0.1799	0.0669		
Sr _{0.8} Eu _{0.2} F ₂	SrF ₂ :20Eu	0.1693	0.0892		

Table 8. Precursors for synthesis of 1 mmol of SrF_2 : 10 mol% Eu^{3+} , y mol% Bi^{3+} ($y = 5, 10, 15, 20, 30, 40, 50$) samples.

Sample	Abbreviated Name	$\text{Sr}(\text{NO}_3)_2$ (g)	$\text{Eu}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ (g)	$\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ (g)	NaF (g)	EG (ml)
$\text{Sr}_{0.4}\text{Eu}_{0.1}\text{Bi}_{0.5}\text{F}_2$	$\text{SrF}_2:10\text{Eu}5\text{Bi}$	0.1799		0.0243		
$\text{Sr}_{0.8}\text{Eu}_{0.1}\text{Bi}_{0.1}\text{F}_2$	$\text{SrF}_2:10\text{Eu}10\text{Bi}$	0.1693		0.0485		
$\text{Sr}_{0.75}\text{Eu}_{0.1}\text{Bi}_{0.15}\text{F}_2$	$\text{SrF}_2:10\text{Eu}15\text{Bi}$	0.1587		0.0725		
$\text{Sr}_{0.7}\text{Eu}_{0.1}\text{Bi}_{0.2}\text{F}_2$	$\text{SrF}_2:10\text{Eu}20\text{Bi}$	0.1481	0.0446	0.0970	0.0840	15
$\text{Sr}_{0.6}\text{Eu}_{0.1}\text{Bi}_{0.3}\text{F}_2$	$\text{SrF}_2:10\text{Eu}30\text{Bi}$	0.1269		0.1455		
$\text{Sr}_{0.5}\text{Eu}_{0.1}\text{Bi}_{0.4}\text{F}_2$	$\text{SrF}_2:10\text{Eu}40\text{Bi}$	0.1058		0.1940		
$\text{Sr}_{0.4}\text{Eu}_{0.1}\text{Bi}_{0.5}\text{F}_2$	$\text{SrF}_2:10\text{Eu}50\text{Bi}$	0.0846		0.2425		

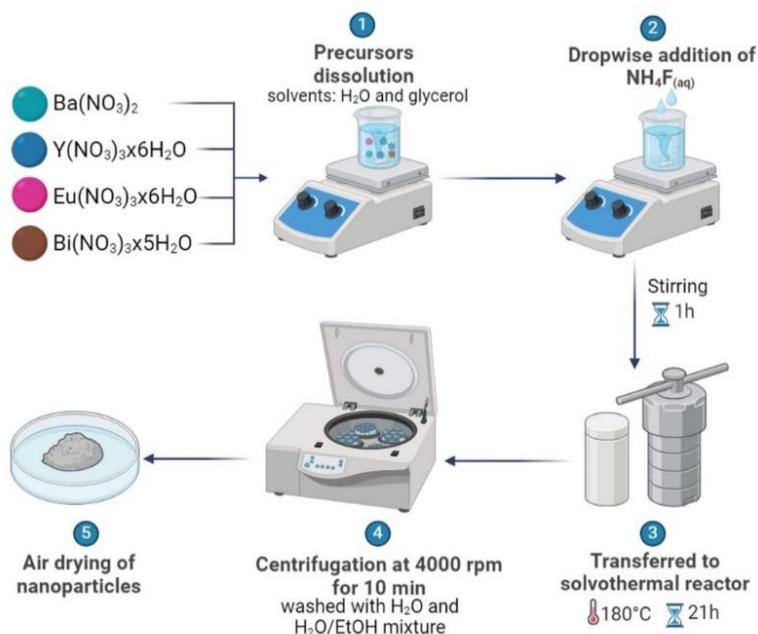
Table 9. Exact amounts of precursors used for the synthesis of 1 mmol of $\text{SrF}_2:20\text{Bi}$ sample

Sample	Abbreviated name	$\text{Sr}(\text{NO}_3)_2$ (g)	$\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ (g)	NaF (g)	EG (ml)
$\text{Sr}_{0.8}\text{Bi}_{0.2}\text{F}_2$	$\text{SrF}_2:20\text{Bi}$	0.1693	0.0970	0.0840	15

Figure 5. Schematic illustration of the precipitation synthesis of $\text{SrF}_2:\text{Eu},\text{Bi}$ nanoparticles.

Synthesis of Eu^{3+} -doped BaF_2 nanoparticles – WP1, subactivity 1.1

Table 10. Precursors for synthesis of 1 mmol of $\text{BaF}_2: x$ mol% Eu^{3+} ($x = 1, 5, 10, 15, 20$) samples.


Sample	Abbreviated name	$\text{Ba}(\text{NO}_3)_2$ (g)	$\text{Eu}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ (g)	NaF (g)	EG (ml)
$\text{Ba}_{0.99}\text{Eu}_{0.01}\text{F}_2$	$\text{BaF}_2:1\text{Eu}$	0.2587	0.0045		
$\text{Ba}_{0.95}\text{Eu}_{0.05}\text{F}_2$	$\text{BaF}_2:5\text{Eu}$	0.2483	0.0223		
$\text{Ba}_{0.9}\text{Eu}_{0.1}\text{F}_2$	$\text{BaF}_2:10\text{Eu}$	0.2352	0.0446	0.0840	15
$\text{Ba}_{0.85}\text{Eu}_{0.15}\text{F}_2$	$\text{BaF}_2:15\text{Eu}$	0.2221	0.0669		
$\text{Ba}_{0.8}\text{Eu}_{0.2}\text{F}_2$	$\text{BaF}_2:20\text{Eu}$	0.2091	0.0892		

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

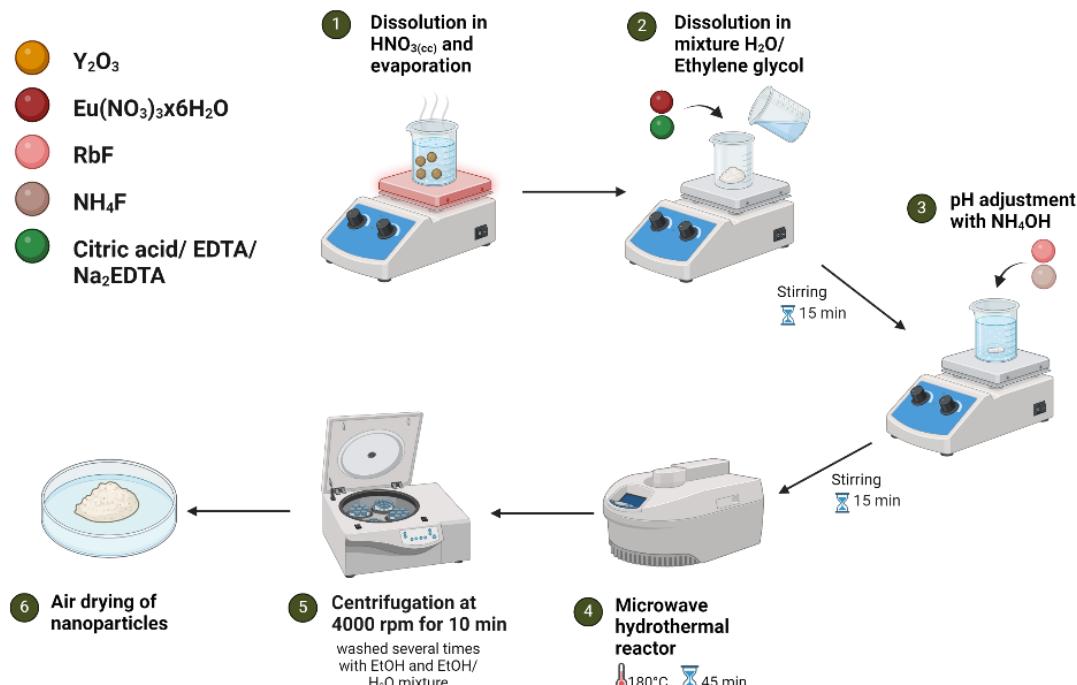
Synthesis of Eu³⁺-doped BaYF₅ and Bi³⁺, Eu³⁺-doped BaYF₅ nanoparticles – WP1, subactivity 1.2

Table 11. The precursor quantities for the synthesis of BYF:10Eu, yBi ($y = 0, 5, 10, 20, 30, 50$ mol%).

Bi ³⁺ (mol%)	Ba(NO ₃) ₂ (mmol)	Y(NO ₃) ₃ ·6H ₂ O (mmol)	Eu(NO ₃) ₃ ·6H ₂ O (mmol)	Bi(NO ₃) ₃ (mmol)	NH ₄ F (mmol)
0		0.90		/	
5		0.85		0.05	
10		0.80		0.10	
20	1.00	0.70	0.10	0.20	7.00
30		0.60		0.30	
50		0.40		0.50	

Figure 6. Schematic illustration of the solvothermal synthesis of BYF: Eu, Bi nanoparticles. The precursors were initially dissolved in a water-glycerol mixture and fluoride ions were added dropwise (steps 1, 2). After vigorous stirring, the resulting mixture was transferred to a Teflon-lined autoclave and heated to 180°C for 21 h (step 3). The resulting nanoparticles were subsequently washed, centrifuged, and left to dry in air (steps 4, 5).

Synthesis of Eu³⁺-doped BaGdF₅ and Bi³⁺, Eu³⁺-doped BaGdF₅ nanoparticles – WP1, subactivity 1.2


Table 12. Precursors for synthesis of BaGdF₅: 10 mol% Eu³⁺ sample.

BaGdF ₅	Ba(NO ₃) ₂ (g)	Gd(NO ₃) ₃ ·6H ₂ O (g)	Eu(NO ₃) ₂ ·H ₂ O (g)	NH ₄ F (g)
BGF:10Eu	0.2570	0.4059	0.0447	0.2590

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW


Synthesis of Eu³⁺-doped RbY₃F₁₀ nanoparticles – WP1, subactivity 1.2Table 13. Precursors for the synthesis of RbY₃F₁₀: x mol% Eu³⁺ sample.

RbY ₃ F ₁₀	RbF (g)	Y ₂ O ₃ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F(g)	EDTA(g)	Citric acid(g)
RYF:10Eu_1					/	0.2880
RYF:10Eu_2		0.1525	0.0670		/	
RYF:10Eu_3					0.4384	
RYF:10Eu_4						
RYF:1Eu	0.0522	0.1678	0.0067	0.1850		
RYF:5Eu		0.1610	0.0335		0.0730	/
RYF:15Eu		0.1441	0.1006			
RYF:30Eu		0.1186	0.2010			
RYF:50Eu		0.0847	0.3350			

Figure 7. Schematic illustration of the solvothermal synthesis of RbY₃F₁₀: Eu nanoparticles.Synthesis of Eu³⁺-doped GdF₃ nanoparticles – WP1, subactivity 1.1Table 14. Precursors for the synthesis of GdF₃: 10 mol% Eu³⁺ samples.

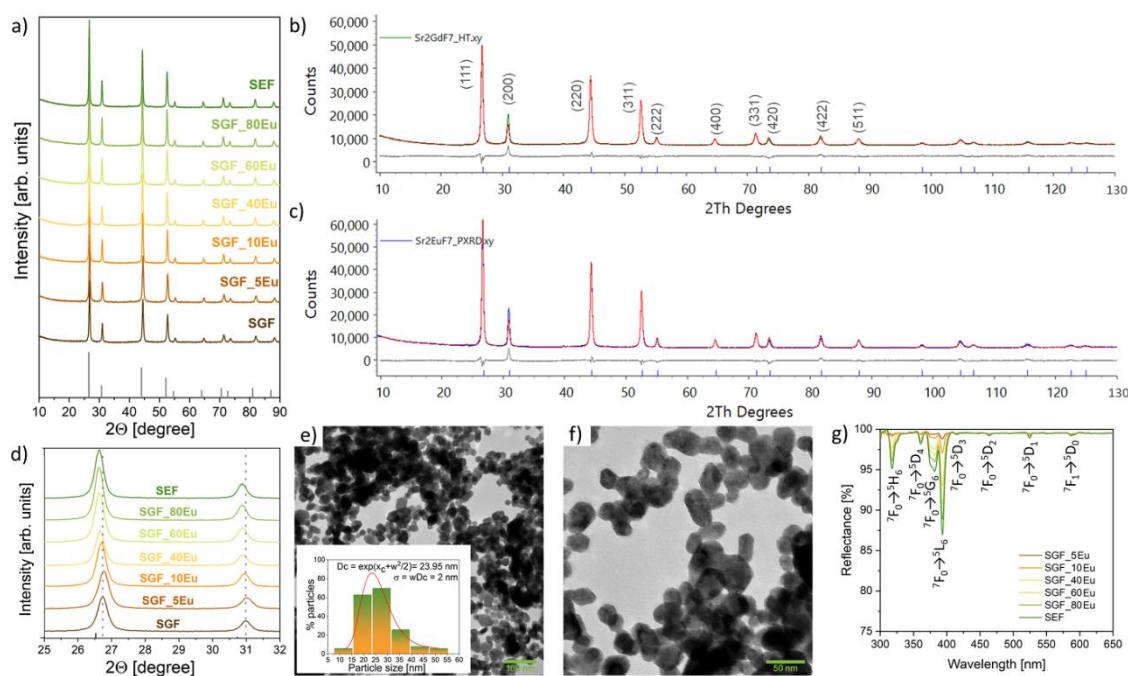
GdF ₃	Gd(NO ₃) ₃ ·6H ₂ O (g)	Eu(NO ₃) ₂ ·5H ₂ O (g)	NH ₄ F (g)
10 mol.% Eu	1.6248	0.1784	0.4444

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Figure 8. Schematic illustration of the precipitation synthesis of GdF₃:Eu nanoparticles.

6. Summary of Deliverable D1.2 – Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors properties (WP1, month 15)

Deliverable D1.2 – *Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors properties*, the LEDtech-GROW project is a public document, delivered in the context of **WP1** - *Design, synthesis, and characterization of plant-grow-targeted phosphors, Subactivity 1.3 - Structural, morphological, and optical analysis of phosphors [month: 6-15] and Subactivity 1.4 - Temperature-dependent photoluminescence, quantum efficiency, and chemical stability of phosphor [month: 6-15]*. This document outlines the detailed properties of prepared Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors for sharing and disseminating information related to the LEDtech-GROW project.


Properties of Sr₂GdF₇:Eu³⁺ and Sr₂GdF₇:Bi³⁺, Eu³⁺

Structure, morphology, and diffuse reflectance of Eu³⁺-doped Sr₂GdF₇ – WP1, subactivity 1.3

Powder X-ray diffraction (PXRD) patterns of Sr₂Gd_{1-x}Eu_xF₇ ($x = 0, 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) nanophosphors are shown in Figure , with Rietveld refinement fits for the two end members, Sr₂GdF₇ (SGF) and Sr₂EuF₇ (SEF), given as Figure b-c ($R_{wp} = 2.72\%$ and 3.43% , respectively). The patterns of Sr₂GdF₇ and Sr₂EuF₇ were fitted using a structural model in the cubic space group $Fm\bar{3}m$ (225), with Sr and Gd ions on Wyckoff site 4a with $m\bar{3}m$ symmetry and F ions on Wyckoff site 8c with $\bar{4}3m$ symmetry. Transmission electron microscopy (TEM) images of representative colloidal SGF_40%Eu³⁺ particles, obtained with different magnifications, are shown in Figure e-f. Nanoparticles show a similar quasi-spherical shape with the average particle size estimated to be 24 ± 2 nm (see the histogram fitted with a log-normal distribution, based on around 200 particles, Figure e inset). The room temperature diffuse reflectance spectra of Sr₂Gd_{1-x}Eu_xF₇ ($x = 0, 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) samples in the 300–650 nm wavelength range, which display typical optical features of Eu³⁺ ions. The absorption peaks of Eu³⁺ ions, which are located at 317, 360, 381, 394, 414, 464, 525, and 587 nm correspond to the

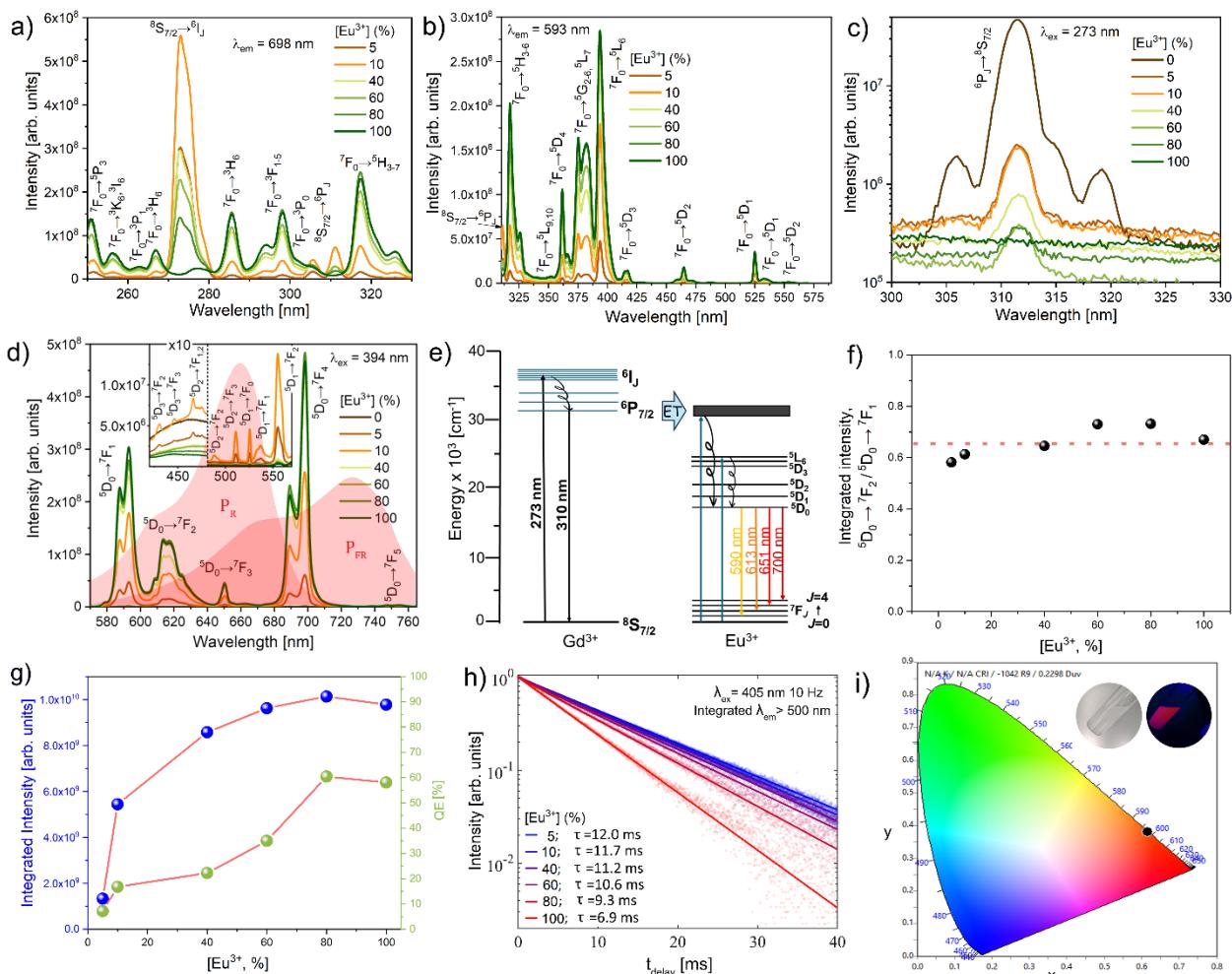
This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

following electronic transitions: $7F_0 \rightarrow 5H_3$, $7F_0 \rightarrow 5D_4$, $7F_0 \rightarrow 5G_6$, $7F_0 \rightarrow 5L_6$, $7F_0 \rightarrow 5D_3$, $7F_0 \rightarrow 5D_2$, $7F_0 \rightarrow 5D_1$, and $7F_1 \rightarrow 5D_0$, respectively, with the highest absorption at around 394 nm.

Figure 9. (a) PXRD patterns of $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ ($x = 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) nanophosphors; (b, c) Rietveld fits for Sr_2GdF_7 and Sr_2EuF_7 . Green (SGF) and blue (SEF) curves represent the observed pattern, in each case, the red curves are the calculated patterns, and the difference curves are shown in grey, while blue tick marks represent the positions of the Bragg peaks; (d) Enlarged (111) and (200) diffraction peaks showing a shift toward lower Bragg angles due to the replacement of Gd with Eu ions in the host material; (e, f) TEM images under different magnification with the particle size distribution of representative colloidal SGF:40mol% Eu³⁺ given as Inset in Figure 9e; (g) Room temperature diffuse reflectance spectra for all $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ ($x = 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) samples.

Photoluminescent properties of Eu³⁺-doped Sr_2GdF_7 – WP1, subactivity 1.3

The room temperature photoluminescence excitation spectra of all $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ colloids recorded in the 250–330 nm ($\lambda_{\text{em}} = 698 \text{ nm}$) and 310–570 nm ($\lambda_{\text{em}} = 593 \text{ nm}$) ranges are given in Figure a-b, showing lines that correspond to transitions within the $4f^6$ configuration of Eu³⁺ and $4f^7$ configuration of Gd³⁺. Photoluminescence emission spectra of all $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ colloids recorded at room temperature are given in Figure 10c ($\lambda_{\text{ex}} = 273 \text{ nm}$) and Figure 10d ($\lambda_{\text{ex}} = 394 \text{ nm}$). The energy level diagram and energy transfer mechanism of Gd³⁺ and Eu³⁺ in SGF are shown in Figure 10e.


The asymmetry ratio values obtained from the emission spectra do not vary significantly as a function of Eu³⁺ concentration, as shown in Figure 10f. The Eu³⁺ deep-red emission ($^5\text{D}_0 \rightarrow 7\text{F}_4$) in SGF:Eu phosphors have a full width at a half-maximum of around 10 nm and fits the absorption band of phytochrome photoreceptors, P_{FR} . Furthermore, the Eu³⁺ red emission bands ($^5\text{D}_0 \rightarrow 7\text{F}_1$ and $^5\text{D}_0 \rightarrow 7\text{F}_2$) matched the red-adsorbing phytochrome photoreceptors, P_{R} , indicating that SGF:Eu may be an effective nanophosphor for horticulture LED applications. Figure 10h displays the normalized photoluminescent lifetime decay curves of the $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ ($x = 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) colloids recorded at room temperature. As the Eu³⁺ concentration increased, the $^5\text{D}_0$ -level lifetimes gradually decreased from 12.0 to 6.9 ms. The shortening of the lifetime with increasing concentration indicates the activation of concentration-quenching mechanisms.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Chromaticity coordinates (x,y) on the CIE chromaticity diagram, a two-dimensional color space that describes all the colors observed by the human eye, can be used to quantify apparent color. We derived the CIE chromaticity coordinates from the photoluminescent spectra to evaluate the color of the synthesized samples, as shown in Figure 10i and Table 15. For all the samples, CIE coordinates are almost identical for the highly doped samples ($x = 0.62$, $y = 0.38$; $\lambda_{\text{dom}} = 598$ nm; color purity = 99.1%) and placed in the orange-red portion of the diagram, confirming that there is no significant change in the local symmetry around Eu^{3+} across the series and consequently in the emission spectra. Inset in Figure 10i shows the translucent white color of colloids under daylight and the red appearance of colloids under UV light.

Table 15 Chromaticity coordinates (x,y) of SGF:Eu

	SGF_5Eu	SGF_10Eu	SGF_40Eu	SGF_60Eu	SGF_80Eu	SEF
CIE (x, y) coordinates	(0.565,0.398)	(0.586,0.396)	(0.611,0.384)	(0.615,0.381)	(0.616,0.381)	(0.614,0.383)

Figure 10. Room temperature photoluminescence of $\text{Sr}_2\text{Gd}_{1-x}\text{Eu}_x\text{F}_7$ ($x = 0.05, 0.10, 0.40, 0.60, 0.80$, and 1.00) colloids: a) excitation spectra under $\lambda_{\text{em}} = 698$ nm; b) excitation spectra under $\lambda_{\text{em}} = 593$ nm; c) emission spectra under $\lambda_{\text{ex}} = 273$ nm; d) emission spectra under $\lambda_{\text{ex}} = 394$ nm (red pattern is the absorption spectra of P_R and P_{FR} photoreceptors); e) energy level diagram and energy transfer mechanism of Gd^{3+} and Eu^{3+} in SGF; f) asymmetry ratio as a function of Eu^{3+} ions concentration; g) integrated emission intensity as a function of Eu^{3+} ions concentration (blue dots) and quantum efficiency (red line); h) intensity decay as a function of delay time for different Eu^{3+} concentrations; i) CIE chromaticity diagram with data points for different samples and insets showing the color of the colloids under daylight and UV light.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

efficiency as a function of Eu³⁺ ions concentration (green dots); h) lifetime decay curves as a function of Eu³⁺ concentration; and i) CIE diagram with calculated coordinates of SGF_80Eu (Inset: appearance of colloid under daylight and near UV light).

Temperature-dependent photoluminescence measurements of Eu³⁺-doped SGF – WP1, subactivity 1.4

To determine the temperature stability, temperature-dependent photoluminescence measurements in steady-state and time domains were recorded in the 25–200 °C temperature range on dried samples in powder form. Figure 11a shows the white color of powders under daylight and the red appearance under UV light, which becomes more intense as Eu³⁺ concentration increases. Figure 11b shows the lifetime, while Figure 11c shows the emission intensity as a function of temperature for two representative samples, SGF_5Eu (with the lowest Eu³⁺ content in the series) and the SGF_80Eu sample, with the highest emission intensity.

The powder sample of the highest emission intensity, SGF_80Eu, with a ceramic binder and placed it on top of a 365 nm near-UV LED chip to demonstrate the application potential of these materials in LEDs. Photographs of the fabricated LED device, presented in Figure 11d, display a red light when the power supply is on. In addition, Figure 11e shows the PL spectrum of the fabricated LED device with CIE coordinates (0.5759, 0.3893) and low correlated color temperature (CCT = 1534 K).

Table 16. QE values and temperature stability for some previously reported far-red phosphors

Far-red-emitting phosphors	λ_{ex} (nm), λ_{em} (nm)	QE (%)	Thermal stability (I_{373K}/I_{303K})	Thermal stability (I_{423K}/I_{303K})
SGF_80Eu	394, 698	60.4	83%	66%
Li ₂ MgZrO ₄ :Mn ⁴⁺	335, 675	32.3	75%	58%
Ca ₂ LuSbO ₆ :Mn ⁴⁺	345, 683	39.1	66%	48%
La ₂ ZnTiO ₆ :Mn ⁴⁺	342, 708	-	81%	64%
CaYAlO ₄ : Mn ⁴⁺	370, 710	26	50%	70%
NaLaMgWO ₆ :Mn ⁴⁺	342, 700	60	-	57%
Ca ₉ MY _{0.667} (PO ₄) ₇ :Eu ³⁺ (M = Li, Na)	394, 700	-	-	-
Lu ₂ GeO ₅ :Bi ³⁺ ,Eu ³⁺	313,710	43	70%	51%

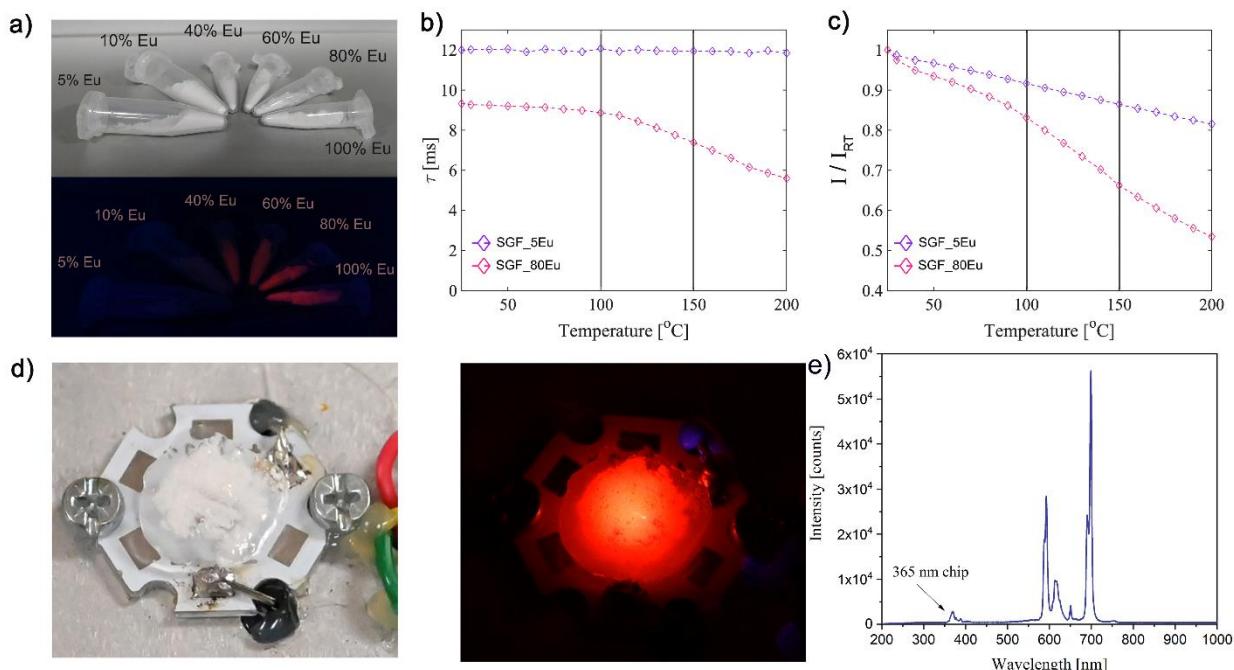


Figure 11. a) Appearance of nanopowders under daylight and near UV light. Temperature-dependence of b) lifetime and c) emission intensity for the whole set of nanopowders. d) A fabricated LED device comprising a semiconductor chip and SGF_80Eu nanopowders displays a red light when the electrical power supply is on. e) PL spectrum of the fabricated LED.

Structural and optical properties of Bi^{3+} -doped $\text{Sr}_2\text{Gd}_{0.2}\text{Eu}_{0.8}\text{F}_7$ nanoparticles – WP1, sub-activity 1.3

Powder X-ray diffraction patterns of $\text{Sr}_2\text{Gd}_{0.2}\text{Eu}_{0.8}\text{F}_7:\text{xBi}^{3+}$ ($x = 0.25, 1, 5$, and 10 mol\%) nanophosphors are shown in Figure . The patterns of $\text{Sr}_2\text{Gd}_{0.2}\text{Eu}_{0.8}\text{F}_7:\text{xBi}^{3+}$ are in accordance with the cubic space group $Fm\bar{3}m$ (225). All observed reflections were accounted for in the PXRD patterns of all samples, and the absence of extra peaks confirms the phase purity of the materials prepared.

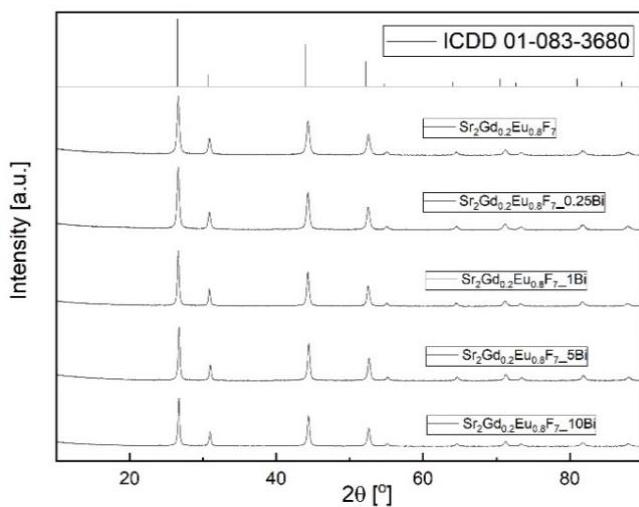


Figure 12. PXRD patterns of $\text{Sr}_2\text{Gd}_{0.2}\text{Eu}_{0.8}\text{F}_7:\text{xBi}^{3+}$ ($x = 0.25, 1, 5$, and 10 mol\%) nanophosphors.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

The room temperature photoluminescence emission spectra of all of Bi³⁺-co-doped Sr₂Gd_{0.2}Eu_{0.8}F₇ powders were recorded in the 420–750 nm ($\lambda_{\text{ex}} = 391$ nm). Emissions correspond to 4f–4f transitions of Eu³⁺ placed at ~592 nm (⁵D₀→⁷F₁), ~613 nm (⁵D₀→⁷F₂), ~650 nm (⁵D₀→⁷F₃), and ~700 nm (⁵D₀→⁷F₄). Europium ions' emission intensity monotonically increases in the co-doped samples up to 1 mol% of Bi³⁺, while the further addition of Bi³⁺ decreases the emission intensity. CIE coordinates and correlated color temperature values are presented in Table 17.

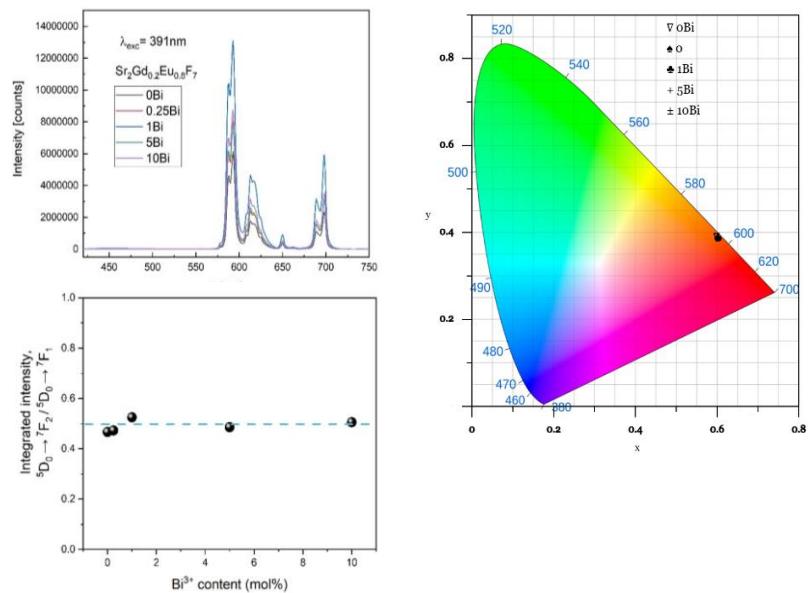
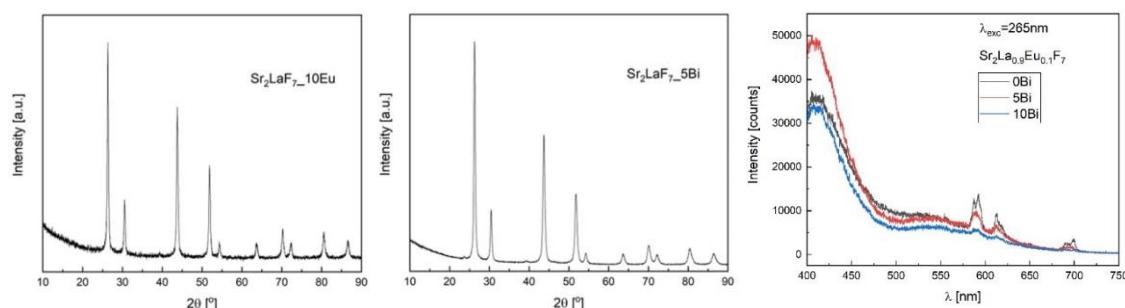


Figure 13. Photoluminescence spectra of Sr₂Gd_{0.2}Eu_{0.8}F₇: xBi³⁺ (x = 0.25, 1, 5, and 10 mol%) nanophosphors; the integrated intensity of the ⁵D₀→⁷F₂ and ⁵D₀→⁷F₁ transitions, known as the asymmetry ratio; and CIE chromaticity diagram.


Table 17. Chromaticity coordinates (x,y) of Sr₂Gd_{0.2}Eu_{0.8}F₇: xBi³⁺ (x = 0.25, 1, 5, and 10 mol%) nanophosphors.

Sr ₂ Gd _{0.2} Eu _{0.8} F ₇ (SGEF)	SGEF_0.25Eu	SGEF_1Eu	SGEF_5Eu	SGEF_10Eu	
CIE (x, y) coordinates	(0.598,0.388)	(0.601,0.389)	(0.601,0.387)	(0.600,0.389)	(0.602,0.389)
CCT	1727.5	1729.6	1737.0	1730.8	1734.1

Properties of Sr₂LaF₇:Bi³⁺,Eu³⁺

Structural and optical properties of Bi³⁺-doped Sr₂LaF₇ (5 mol% Bi³⁺) – WP1, subactivity 1.3

Powder X-ray diffraction patterns of Sr₂LaF₇:10mol% Eu³⁺ and Sr₂LaF₇ :5mol% Bi³⁺ nanophosphors are shown in Figure . The patterns of Sr₂LaF₇:10mol% Eu³⁺ and Sr₂LaF₇ :5mol% Bi³⁺ match well with the International Centre for Diffraction Data (ICDD) Card No. 00-053-0774, with the cubic space group $Fm\bar{3}m$ (225).

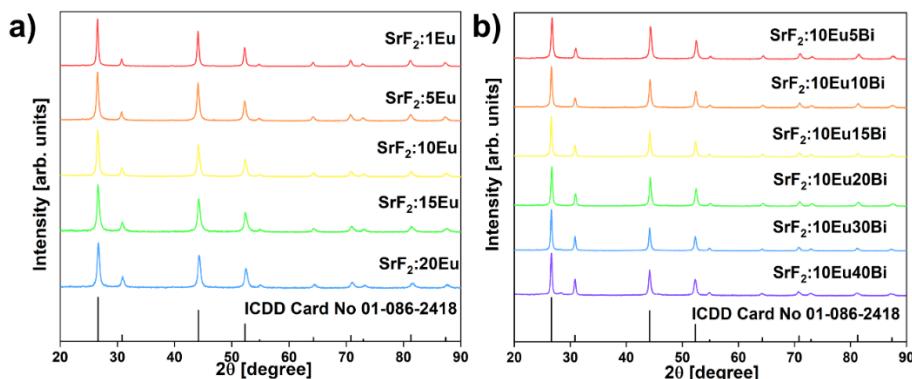
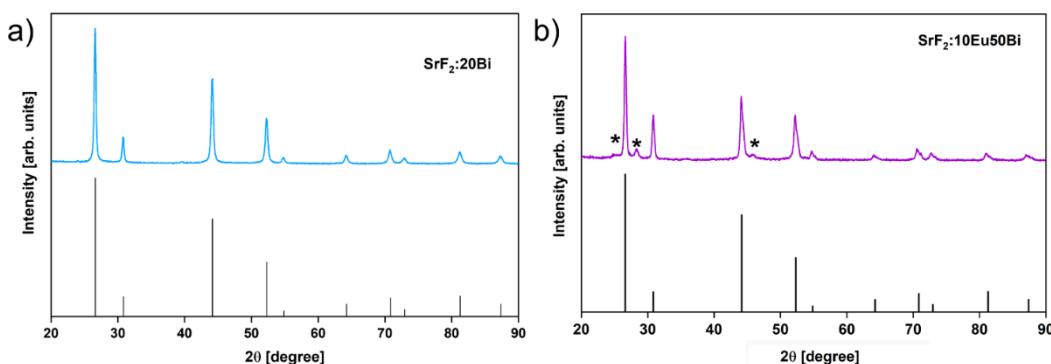


Figure 14. PXRD patterns of $\text{Sr}_2\text{LaF}_7\text{:}10\text{mol\% Eu}^{3+}$ and $\text{Sr}_2\text{LaF}_7\text{:}5\text{mol\% Bi}^{3+}$ nanophosphors (up) and room temperature photoluminescence spectra of $\text{Sr}_2\text{La}_{0.9}\text{Eu}_{0.1}\text{F}_7\text{:}x\text{Bi}^{3+}$ ($x=0, 5, \text{ and } 10\text{mol\%}$) nanophosphors (down).


Properties of $\text{SrF}_2\text{:Eu}^{3+}$ and $\text{SrF}_2\text{:Bi}^{3+},\text{Eu}^{3+}$

Structure and morphology of Eu^{3+} -doped SrF_2 and $\text{Bi}^{3+},\text{Eu}^{3+}$ -doped SrF_2 nanoparticles – WP1, subactivity 1.3

Figures 15a and 15b show the X-ray pattern of $\text{SrF}_2\text{:}x\text{Eu}$ ($x=1, 5, 10, 15, 20$ mol%) and $\text{SrF}_2\text{:}10\text{Eu},y\text{Bi}$ ($y=5, 10, 15, 20, 30, 40$ mol%) presented with the International Centre for Diffraction Data (ICDD) Card No. 01-086-2418. The X-ray diffraction examination of the synthesized samples proved a single-phase cubic structure with $Fm\text{-}3m$ (225) space group (including the $\text{SrF}_2\text{:}20\text{Bi}$ sample, Figure 16a). Traces of contamination or other phase peaks were not observed in either set of samples, indicating that dopant $\text{Eu}^{3+}/\text{Bi}^{3+}$ ions were embedded into the SrF_2 lattice. On the contrary, in the case of $\text{SrF}_2\text{:}10\text{Eu},50\text{Bi}$ sample, additional peaks originate from a different phase, suggesting the upper limit of dopant ions concentration in the made material has been reached (Figure 16b).

Figure 15. XRD patterns of a) $\text{SrF}_2\text{:}x\text{Eu}$ ($x=1, 5, 10, 15, 20$ mol%) and $\text{SrF}_2\text{:}10\text{Eu},y\text{Bi}$ ($y=5, 10, 15, 20, 30, 40$ mol%) samples presented with the ICDD card No. 01-086-2418.

Figure 16. PXRD patterns of a) $\text{SrF}_2:20\text{Bi}$, and b) $\text{SrF}_2:10\text{Eu}50\text{Bi}$ samples. The diffraction peaks are indexed according to the ICDD card No. 01-086-2418.

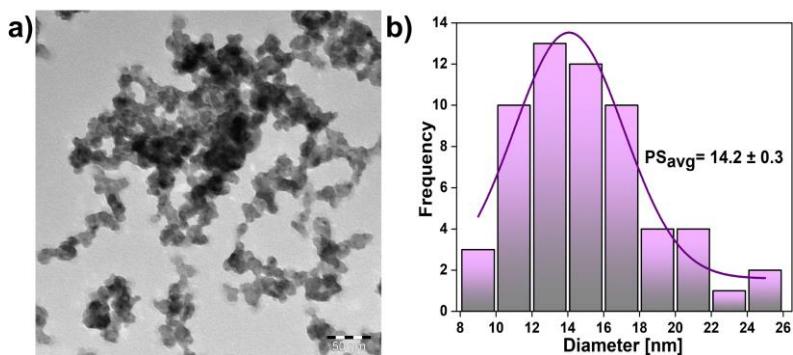

Additionally, the mean crystallite size and structural parameters are presented in Table 18 (parameters for $\text{SrF}_2:x\text{Eu}$ ($x=1, 5, 10, 15, 20$ mol%), $\text{SrF}_2:10\text{Eu}y\text{Bi}$ ($y=5, 10, 15, 20, 30, 40$ mol%), and $\text{SrF}_2:20\text{Bi}$ sample). The average crystallite size (CS) was calculated to be in the nanometer domain ($\sim 14\text{--}25$ nm) for all the samples.

Table 18. Selected structural parameters of the $\text{SrF}_2:x\text{Eu}$ ($x=1, 5, 10, 15, 20$ mol%), $\text{SrF}_2:10\text{Eu}y\text{Bi}$ ($y=5, 10, 15, 20, 30, 40$ mol%) and $\text{SrF}_2:20\text{Bi}$ nanopowders.

ICDD card 01-086-2418	$a=b=c$ (\AA)	CS (\AA)	Strain	GOF	Rwp (%)	Rp (%)	Re (%)
SrF₂:1Eu	5.7970(2)	183.5(11)	0.14(6)	1.0426	7.65	5.77	7.34
SrF₂:5Eu	5.7979(3)	131.2 (11)	0.24(9)	1.0247	7.38	5.77	7.20
SrF₂:10Eu	5.79128(14)	150.2(5)	0.15(3)	1.0261	7.42	5.74	7.23
SrF₂:15Eu	5.7973(5)	117.9 (10)	0.19(9)	1.0567	7.38	5.78	6.98
SrF₂:20Eu	5.7838(5)	123.7 (13)	0.14(3)	1.0936	7.50	5.98	6.86
SrF₂:10Eu5Bi	5.7907(4)	149.0 (18)	0.23(11)	1.1974	8.73	6.79	7.29
SrF₂:10Eu10Bi	5.7914(3)	188(2)	0.06(10)	1.1738	8.64	6.59	7.36
SrF₂:10Eu15Bi	5.7942(4)	209(2)	0.08(7)	1.4142	10.68	7.96	7.55
SrF₂:10Eu20Bi	5.7918(5)	178(3)	0.123(5)	1.4067	10.86	8.10	7.72
SrF₂:10Eu30Bi	5.8023(5)	250(18)	0.220(9)	1.7336	12.84	9.49	7.40
SrF₂:10Eu40Bi	5.8080(13)	201(5)	0.23(8)	1.6523	12.63	9.14	7.87
SrF₂: 20Bi	5.8011(3)	250.5(16)	0.241(5)	1.1840	8.75	6.63	7.39

* Rwp—the weighted profile factor; ** Rp—the profile factor; *** Re—the expected weighted profile factor; GOF—the goodness of fit.

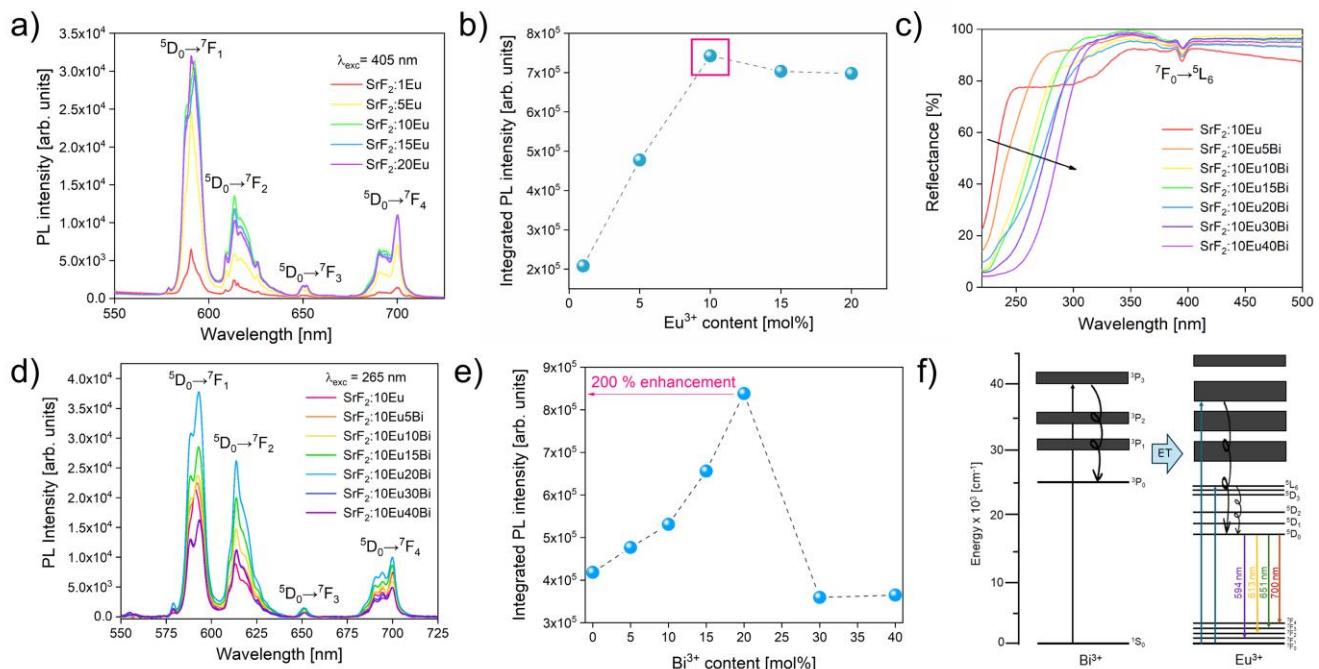

A transmission electron microscopy (TEM) image of the representative $\text{SrF}_2:10\text{Eu}20\text{Bi}$ sample is shown in Figure 17a. Nanoparticles exhibit a pseudo-spherical shape with the average particle size estimated to be 14.2 ± 0.3 nm (see the histogram fitted with a Gaussian distribution, based on around 60 particles, using the largest axis of the grain, Figure 17b). The calculated average particle size roughly equals the crystallite size obtained using X-ray diffraction.

Figure 17. a) TEM images of the representative $\text{SrF}_2:10\text{Eu}20\text{Bi}$ sample, b) particle size distribution histogram.

Photoluminescence properties of Eu^{3+} -doped SrF_2 and Bi^{3+} , Eu^{3+} -doped SrF_2 nanoparticles – WP1, subactivity 1.3

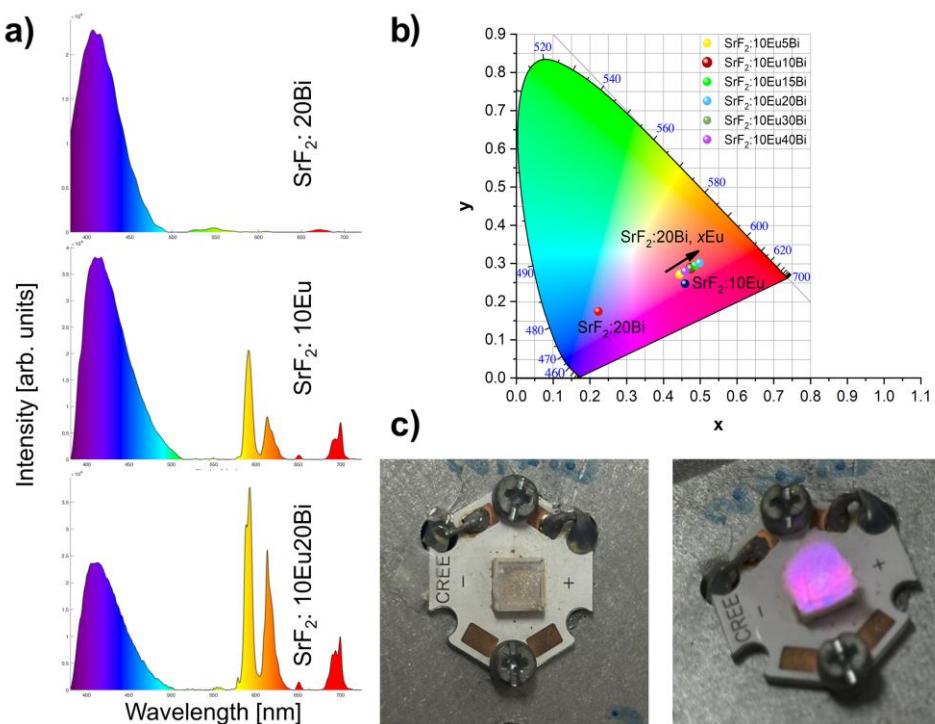

The photoluminescence (PL) emission spectra of Eu^{3+} - doped set of samples: $\text{SrF}_2:1\text{Eu}$, $\text{SrF}_2:5\text{Eu}$, $\text{SrF}_2:10\text{Eu}$, $\text{SrF}_2:15\text{Eu}$, and $\text{SrF}_2:20\text{Eu}$ recorded at room temperature are displayed in Figure 18a ($\lambda_{\text{exc}} = 405 \text{ nm}$). Figure 18c shows the diffuse reflectance spectra of Bi^{3+} co-doped $\text{SrF}_2:10\text{Eu}$ (Bi^{3+} mol% = 5, 10, 15, 20, 30, and 40) samples in the 220–500 nm wavelength range. Figure 18d shows PL emission spectra of Bi^{3+} -co-doped samples in the 550–725 nm spectral region recorded at room temperature under 265 nm excitation. The integrated emission intensity in the 550 – 725 nm wavelength range shows that the sample with the highest emission intensity- $\text{SrF}_2:10\text{Eu}20\text{Bi}$ has twice as bright PL compared to the Bi-free $\text{SrF}_2:10\text{Eu}$ phosphor (Figure 18e). ET between bismuth (Bi^{3+}) and europium (Eu^{3+}) ions in inorganic hosts involves Bi^{3+} ions absorbing energy and transitioning from their ground state to excited states, followed by energy transfer to Eu^{3+} ions, exciting them from their ground to higher states (Figure 18f).

Figure 18. a) Room temperature PL emission spectra under $\lambda_{\text{exc}} = 405 \text{ nm}$ of samples doped with only Eu^{3+} ions, b) Integrated intensity of PL spectra presented in a), c) Diffuse reflectance spectra of samples doped with 10 mol% of Eu^{3+} ions and co-doped with Bi^{3+} ions, d) Room temperature PL emission spectra under $\lambda_{\text{exc}} = 265 \text{ nm}$ of co-doped samples, e) Integrated intensity of PL spectra presented in d), and f) schematic representation of the possible ET between Bi^{3+} and Eu^{3+} ions.

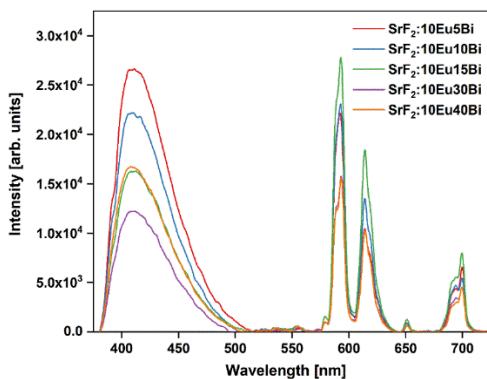

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Figure 19a shows the room temperature PL emission spectra ($\lambda_{\text{exc}} = 265$ nm) of $\text{SrF}_2:20\text{Bi}$, $\text{SrF}_2:10\text{Eu}$, and $\text{SrF}_2:10\text{Eu}20\text{Bi}$ samples in the 380–725 nm spectral region, showing both blue and red-light components in different ratios. Figure 19b shows the CIE chromaticity diagram for $\text{SrF}_2:20\text{Bi}$, $\text{SrF}_2:10\text{Eu}$, and $\text{SrF}_2:10\text{Eu}y\text{Bi}$ samples ($y = 5, 10, 15, 20, 30$, and 40 mol%). The CIE chromaticity coordinates move from blue for the $\text{SrF}_2:20\text{Bi}$ sample, to pinkish for $\text{SrF}_2:10\text{Eu}$, and orange-red areas with the increase of Bi^{3+} content in $\text{SrF}_2:10\text{Eu}y\text{Bi}$, showing the color tunability in the produced series (CIE values are listed in Table 19).

Figure 19. a) The room temperature PL emission spectra of $\text{SrF}_2:20\text{Bi}$, $\text{SrF}_2:10\text{Eu}$, and $\text{SrF}_2:10\text{Eu}20\text{Bi}$ samples showing both blue and red-light components in different ratios ($\lambda_{\text{exc}} = 265$ nm), b) CIE chromaticity coordinates, and c) Fabricated LED device displaying pinkish violet light.

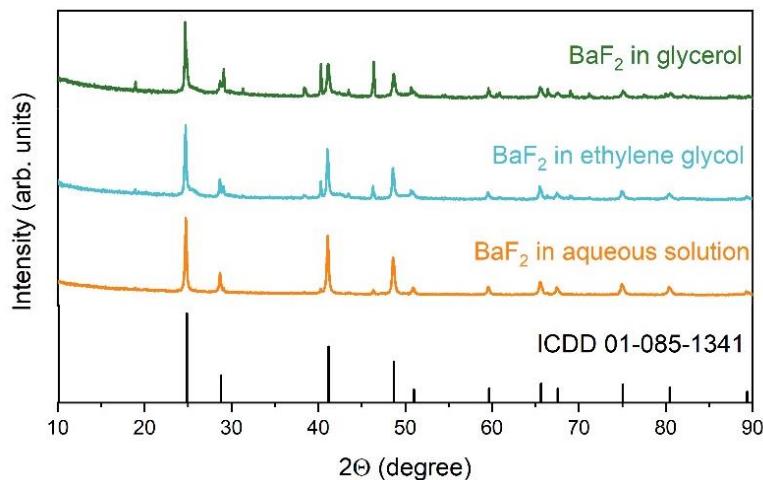
Emission spectra of $\text{SrF}_2:10\text{Eu},y\text{Bi}$ ($y = 5, 10, 15, 30$, and 40 mol%) samples in the 380–725 nm spectral region are presented in Figure 20.

Figure 20 The room temperature PL emission spectra of $\text{SrF}_2:10\text{Eu}y\text{Bi}$ ($x = 5, 10, 15, 30$, and 40 mol%) samples measured in 380–725 nm spectral range showing both blue and red-light components in different ratios ($\lambda_{\text{exc}} = 265$ nm).

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Balancing blue and red-light components is vital for optimizing plant health and maximizing yield in controlled environments. The integrated PL area in the 380–500 nm (blue) and 575–725 nm (red) wavelength range was used to determine the blue- and red-light emission portion. Table 19 shows that single-doped Bi^{3+} and Eu^{3+} SrF_2 exhibit strong blue emissions corresponding to the host material; however, increasing Bi^{3+} concentration enhances Eu^{3+} red emission in Eu^{3+} / Bi^{3+} - activated samples. **The highest red/blue emission portion 40.8 : 59.2 was found for the sample $\text{SrF}_2:10\text{Eu}20\text{Bi}$.**

Table 19. Blue and red emission portions for the $\text{SrF}_2:20\text{Bi}$, $\text{SrF}_2:10\text{Eu}$, and $\text{SrF}_2:10\text{Eu}x\text{Bi}$ ($x = 5, 10, 15, 20, 30$, and 40 mol%) samples.

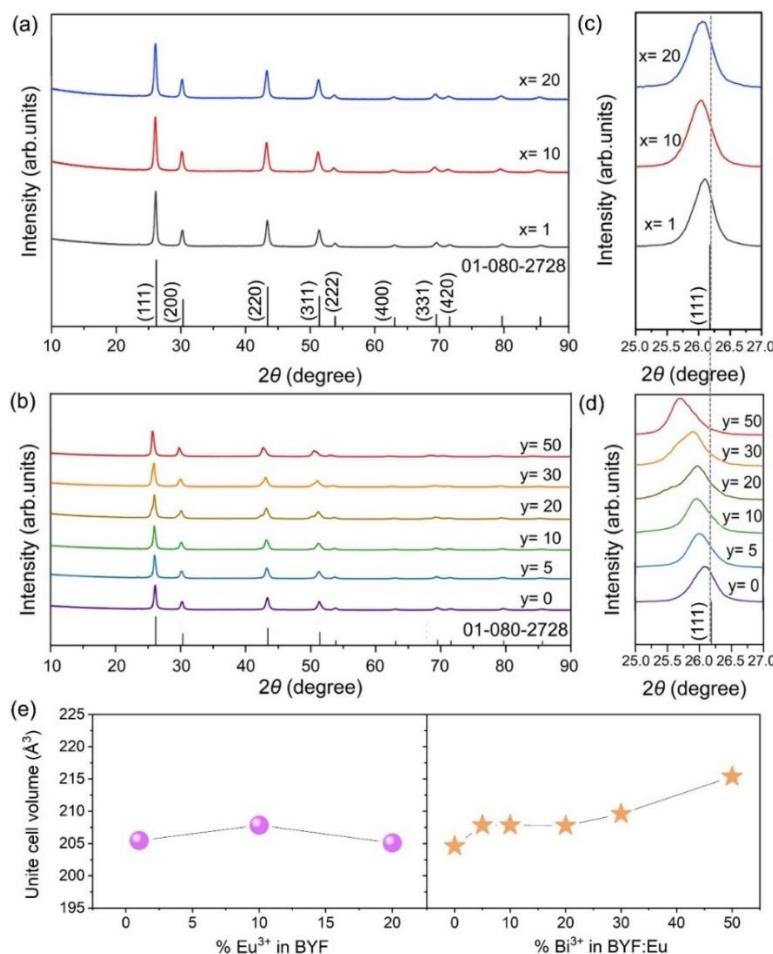

Sample	% Blue	% Red	CIE (x, y) coordinates
$\text{SrF}_2:20\text{Bi}$	100.0	0.0	(0.223, 0.174)
$\text{SrF}_2:10\text{Eu}$	85.0	15.0	(0.399, 0.247)
$\text{SrF}_2:10\text{Eu}5\text{Bi}$	76.5	23.5	(0.444, 0.271)
$\text{SrF}_2:10\text{Eu}10\text{Bi}$	71.6	28.4	(0.474, 0.288)
$\text{SrF}_2:10\text{Eu}15\text{Bi}$	61.9	38.1	(0.486, 0.294)
$\text{SrF}_2:10\text{Eu}20\text{Bi}$	59.2	40.8	(0.498, 0.301)
$\text{SrF}_2:10\text{Eu}30\text{Bi}$	66.7	33.3	(0.473, 0.287)
$\text{SrF}_2:10\text{Eu}40\text{Bi}$	73.1	26.9	(0.459, 0.279)

To demonstrate the potential application of the obtained material in LED fabrication, the powder sample with the highest emission intensity, $\text{SrF}_2:10\text{Eu}20\text{Bi}$, was mixed with a ceramic binder and placed on top of a 275 nm near-UV chip. Photographs of the fabricated LED device, presented in Figure 19c, display strong pinkish-violet light when the power supply is on.

Properties of $\text{BaF}_2:\text{Eu}^{3+}$

Crystal structure of BaF_2 nanoparticles – WP1, subactivity 1.3

Figure 21 displays the X-ray pattern of BaF_2 , referenced against the International Centre for Diffraction Data (ICDD) Card No. 01-085-1341.


Figure 21. XRD patterns of BaF_2 powders synthesized via microwave route at 150 °C for 10 min in water, ethylene glycol, and glycerol.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Properties of $\text{BaYF}_5:\text{Eu}^{3+}$ and $\text{BaYF}_5:\text{Bi}^{3+},\text{Eu}^{3+}$

PXRD and Morphology Analysis – WP1, subactivity 1.3

Despite the addition of Eu^{3+} and Bi^{3+} ions, the main diffraction peaks of $\text{BYF}:x\text{Eu}$, $x = 1\text{--}20$ mol% (Figure 22a) and $\text{BYF}:10\text{Eu},y\text{Bi}^{3+}$, $y = 0\text{--}50$ mol% nanophosphors (Figure 22b), correspond to the main reflections from 111, 200, 220, 311, 222, 400, 331, 420, 422, and 511 crystal planes and resemble standard cubic data of ICDD No. 01-080-2728 for single-phase BaYF_5 , space group $Fm\bar{3}m$ (225). Table 20 shows the results of the structural analysis: crystallite size (CS), microstrain values, unit cell parameters, unit cell volume (CV), and data fit parameters (R_{wp} , R_p , R_e , GOF) of $\text{BYF}:10\text{Eu},y\text{Bi}$ ($y = 0, 5, 10, 20, 30$, and 50 mol%) nanophosphors. The CS of $\text{BYF}:10\text{Eu}$ is estimated to be 19.6 nm, and the lattice constant a is 5.8925 Å (CV = 204.60 Å³). The influence of Bi^{3+} doping in the $\text{BYF}:10\text{Eu}$ lattice causes crystal lattice expansion up to $a = 5.9942$ Å, CV = 215.37 Å³ for the sample $\text{BYF}:10\text{Eu}, 50\text{Bi}$.

Figure 22. PXRD patterns of (a) $\text{BYF}:x\text{Eu}$ ($x = 1, 10$, and 20 mol%) and (b) $\text{BYF}:10\text{Eu},y\text{Bi}^{3+}$ ($y = 0, 5, 10, 20, 30$, and 50 mol%) nanoparticles; (c) The evolution of the (111) diffraction peak magnified from (a); (d) The evolution of the (111) diffraction peak magnified from (b); (e) The values of the unit cell volume versus Eu^{3+} and Bi^{3+} contents in BYF (purple circles) and $\text{BYF}:10\text{Eu}$ (orange stars), respectively.

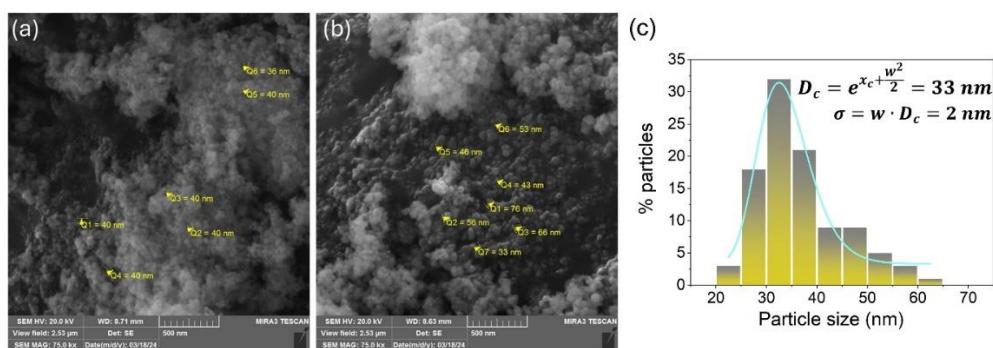

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Table 20. Results of the structural analysis of BYF: 10Eu, yBi nanophosphors, where $y = 0, 5, 10, 20, 30$, and 50 mol% Bi^{3+}

Bi ³⁺ content (mol%)	0	5	10	20	30	50
a=b=c (Å)	5.8925 (3)	5.9236 (4)	5.9235 (5)	5.9227 (6)	5.9401 (6)	5.9942 (5)
CV Å ³)	204.60 (4)	207.85 (5)	207.84 (6)	207.76 (7)	209.60 (7)	215.37 (6)
CS (Å)	196 (3)	274 (5)	305 (12)	198 (11)	100 (6)	95 (5)
Strain	0.46 (3)	0.64 (2)	0.75 (2)	1.03 (6)	0.23 (3)	0.26 (3)
GOF	1.1254	1.5272	1.6212	1.6678	2.9693	3.6494
*R _{wp}	4.23	5.79	6.14	6.42	11.08	13.43
**R _p	3.16	4.45	4.66	4.95	7.57	8.71
***R _e	3.75	3.79	3.78	3.85	3.73	3.68

* R_{wp}—the weighted profile factor; ** R_p—the profile factor; *** R_e—the expected weighted profile factor; GOF—the goodness of fit.

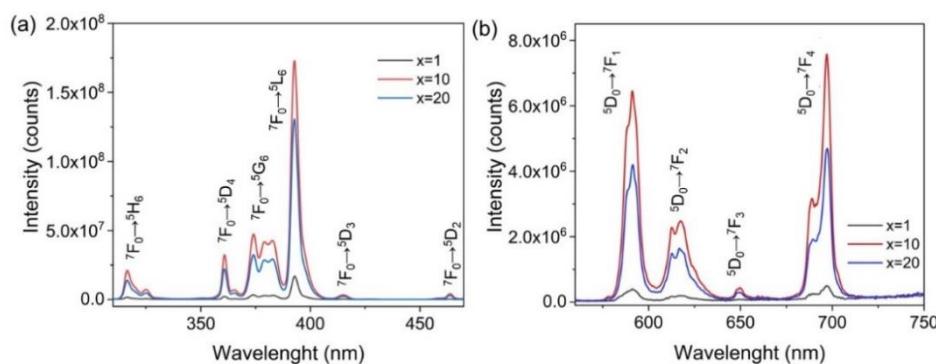

Figure 23 shows SEM images of BYF:10Eu phosphor nanoparticles with a particle size distribution. Nanoparticles are of a quasispherical shape, as well as a high degree of crystallinity. The average crystalline size of BYF: 10Eu nanoparticles, considering more than 100 particles, was estimated to be 33 ± 2 nm (see Figure 23c).

Figure 23. (a, b) SEM images of solvothermally synthesized BYF: 10Eu phosphor nanoparticle; (c) The particle size distribution.

Spectroscopic Properties – WP1, subactivity 1.3

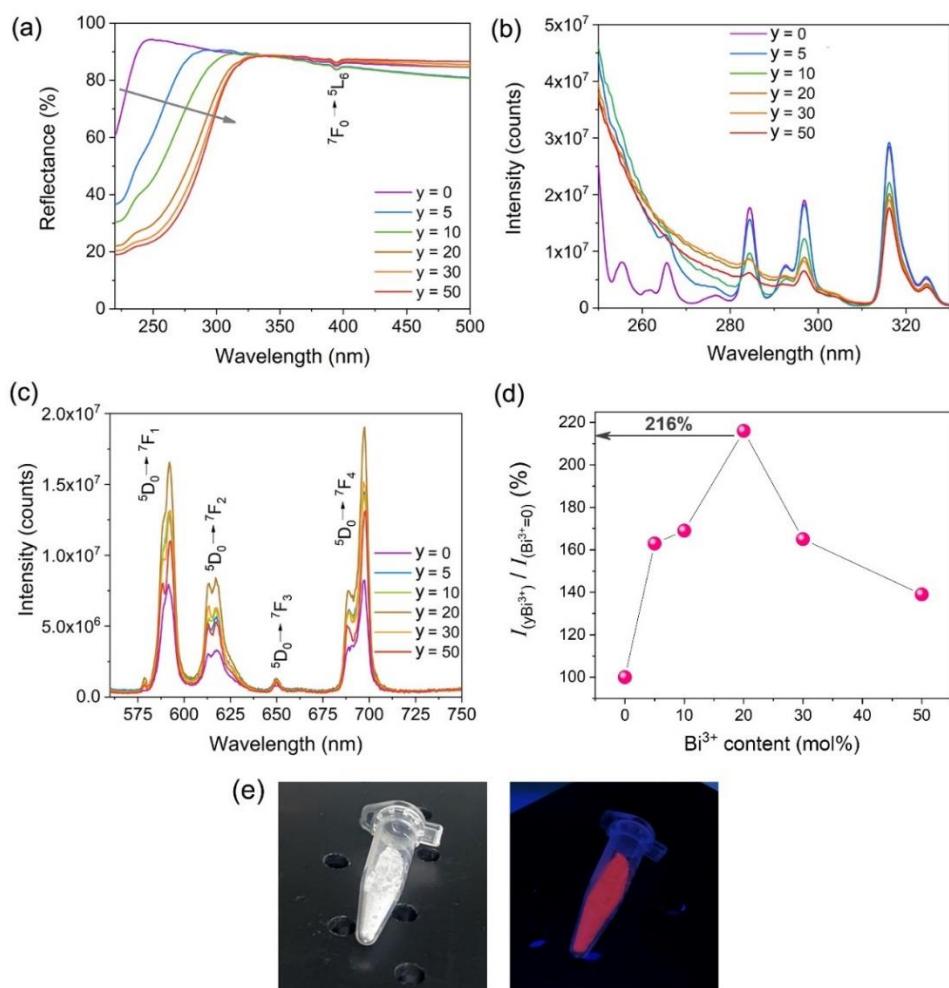

Figure 24 shows the photoluminescence excitation and emission spectra of Bi-free BYF with varying Eu³⁺ contents.

Figure 24. Room temperature photoluminescence for all BYF:xEu (x = 1, 10, and 20 mol%) samples: (a) Excitation spectra under $\lambda_{em} = 592$ nm; (b) Emission spectra under $\lambda_{ex} = 391$ nm;

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

The room temperature diffuse reflectance spectra of BYF:10Eu, y Bi ($y = 0, 5, 10, 20, 30$, and 50 mol%) samples were measured in the 220–500 nm wavelength range. It is observed that the UV band edge tends to shift towards lower energy with an increase of Bi³⁺ content in the BYF: Eu. This red shift with the change of Bi³⁺ content indicates a strong absorption of Bi³⁺, which lies in the UV region. The room temperature photoluminescence excitation spectra of all BYF: Eu, Bi samples recorded in the 250–330 nm ($\lambda_{\text{em}} = 698$ nm) wavelength range are given in Figure 25b. The photoluminescence emission spectra of all BYF: Eu, Bi samples recorded at room temperature are displayed in Figure 25c ($\lambda_{\text{ex}} = 265$ nm). Figure 25d shows that europium's photoluminescent intensity continually increases until the Bi³⁺ content reaches 20 mol%, while the further addition of Bi³⁺ decreases the emission intensity. The integrated emission intensity in the 520 – 720 nm wavelength range shows that the representative BYF: 10Eu, 20Bi sample has a 216% emission enhancement compared to the Bi-free BYF: 10Eu phosphor. Figure 25e shows the translucent white color of representative BYF: 10Eu, 20Bi phosphor nanoparticles under daylight (left) and the red appearance under UV light (right).

Figure 25. (a) Room temperature diffuse reflectance spectra for BYF: 10Eu, y Bi ($y = 0, 5, 10, 20, 30$, and 50 mol%) samples; Room temperature photoluminescence for BYF: 10Eu, y Bi ($y = 0, 5, 10, 20, 30$, and 50 mol%) samples: (b) Excitation spectra under $\lambda_{\text{em}} = 698$ nm; (c) Emission spectra under $\lambda_{\text{ex}} = 265$ nm; (d) Ratio of the integrated emission intensity for BYF: 10Eu samples with varied Bi concentration and Bi-free BYF: 10Eu sample as a function of Bi³⁺ ions concentration; (e) The appearance of representative BYF: 10Eu, 20Bi phosphor nanoparticles under daylight (left) and UV light (right).

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Energy transfer in BYF: Bi Eu, phosphor nanoparticles – WP1, sub-activity 1.3

Energy transfer from a sensitizer to an activator can occur *via* radiative transfer, exchange interaction, or multipole-multipole interaction. Dips in the sensitizer's emission spectra that correlate to the absorption spectrum of activated ions demonstrate the possibility of radiative energy transfer from the sensitizer to the activator. As shown in Figure 26b, the emission spectra of BYF: 20Bi, 20Eu clearly show a dip that overlaps with the absorption of Eu³⁺, indicating that the energy transfer has a radiative character. On the other hand, Figure 26a reveals that 20mol% Bi³⁺ and Eu³⁺ concentrations less than or equal to 10 mol% contribute to a non-radiative character of energy transfer in BYF: Bi, Eu.

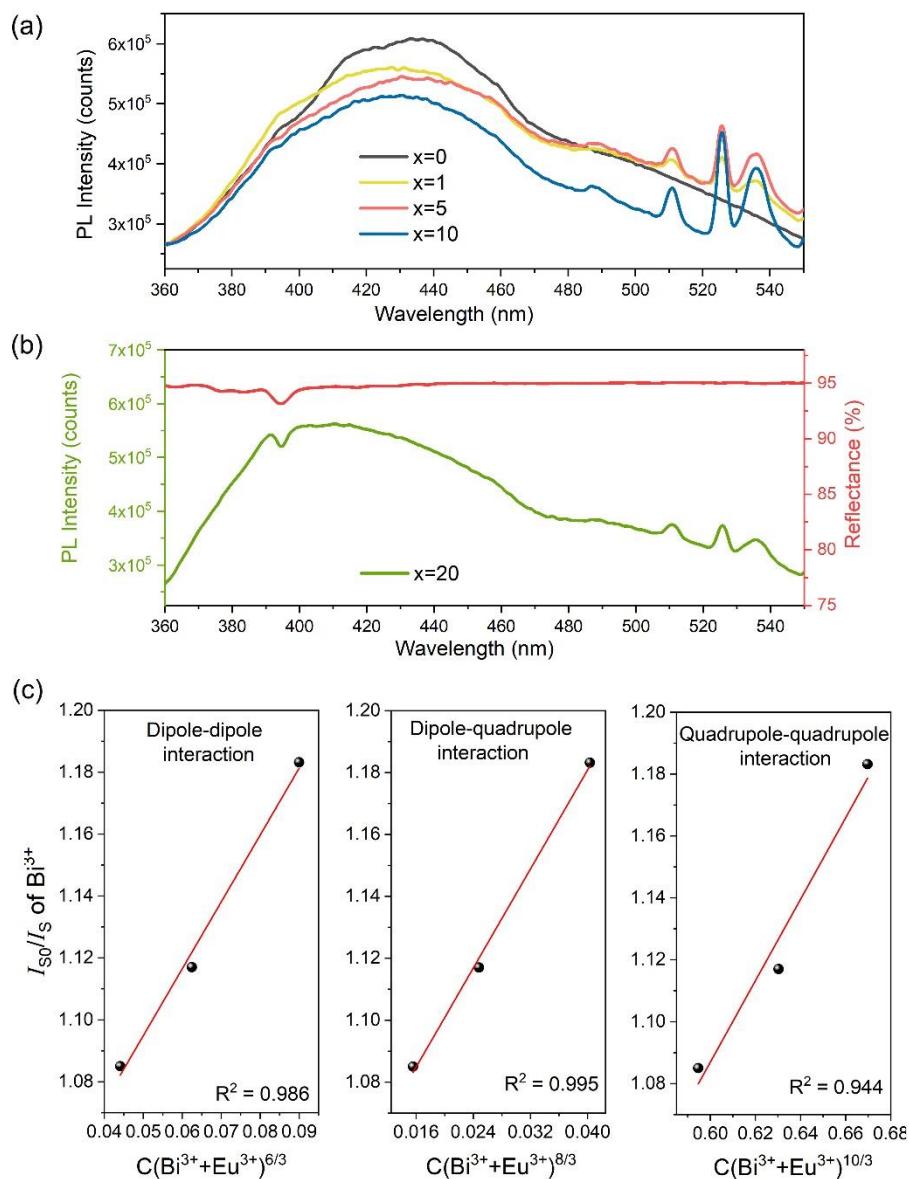
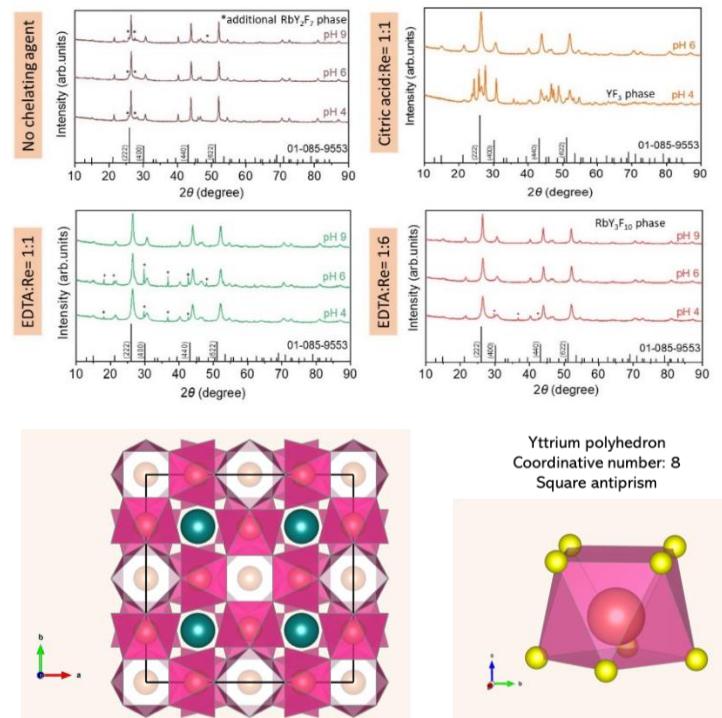


Figure 26. (a) The emission spectra of BYF: xEu, 20Bi ($x = 0, 1, 5$, and 10 mol%) nanoparticles; (b) Overlap of the emission spectrum of BYF: 20Eu, 20Bi and absorption of BYF: 10Eu; (c) Plots of I_{s0}/I_s versus $C(Bi^{3+}+Eu^{3+})^{6/3}$, $C(Bi^{3+}+Eu^{3+})^{8/3}$ and $C(Bi^{3+}+Eu^{3+})^{10/3}$.


Energy transfer efficiencies (η_T) of as-prepared samples increases with the increase of Eu³⁺ content, with maximum values of 16% for the representative BYF: 10Eu, 20Bi sample.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

Properties of $\text{RbY}_3\text{F}_{10}:\text{Eu}^{3+}$

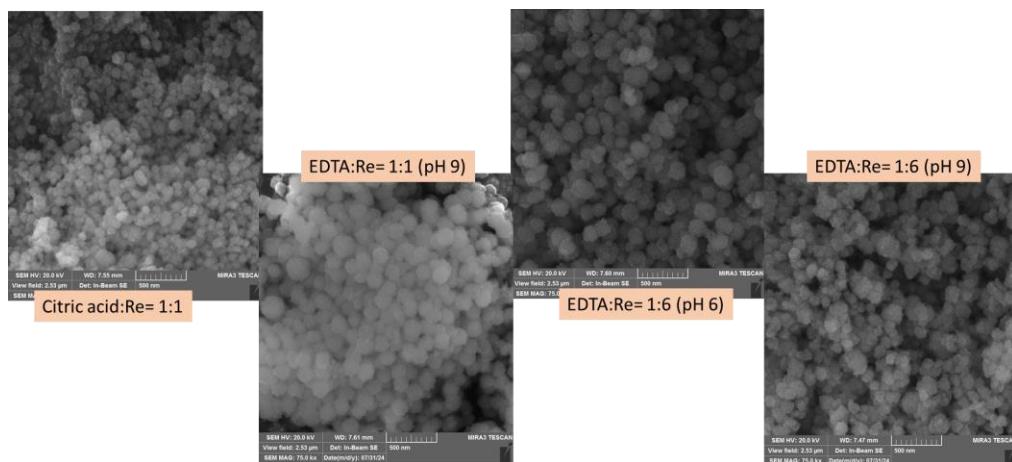

Structure and morphology of Eu^{3+} -doped $\text{RbY}_3\text{F}_{10}$ nanoparticles – WP1, sub-activity 1.3

Figure 27 shows the X-ray pattern of prepared undoped $\text{RbY}_3\text{F}_{10}$ presented with the International Centre for Diffraction Data (ICDD) Card No. 01-085-9553.

Figure 27. PXRD patterns of $\text{RbY}_3\text{F}_{10}$ nanophosphors prepared via different chelating agents and the three-dimensional schematic view of the crystal structure.

Figure 28 shows SEM images of $\text{RbY}_3\text{F}_{10}$ phosphor nanoparticles synthesized using different chelating agents. Nanoparticles are spherical, as well as having a high degree of crystallinity. The average crystalline size of $\text{RbY}_3\text{F}_{10}$ nanoparticles was estimated to be in the range between 50 and 90 nm.

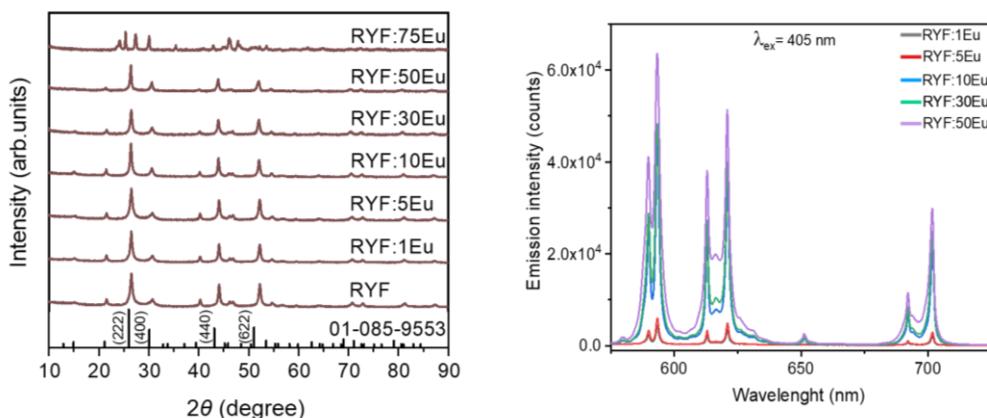


Figure 28. SEM images of the synthesized $\text{RbY}_3\text{F}_{10}$ phosphor nanoparticle.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

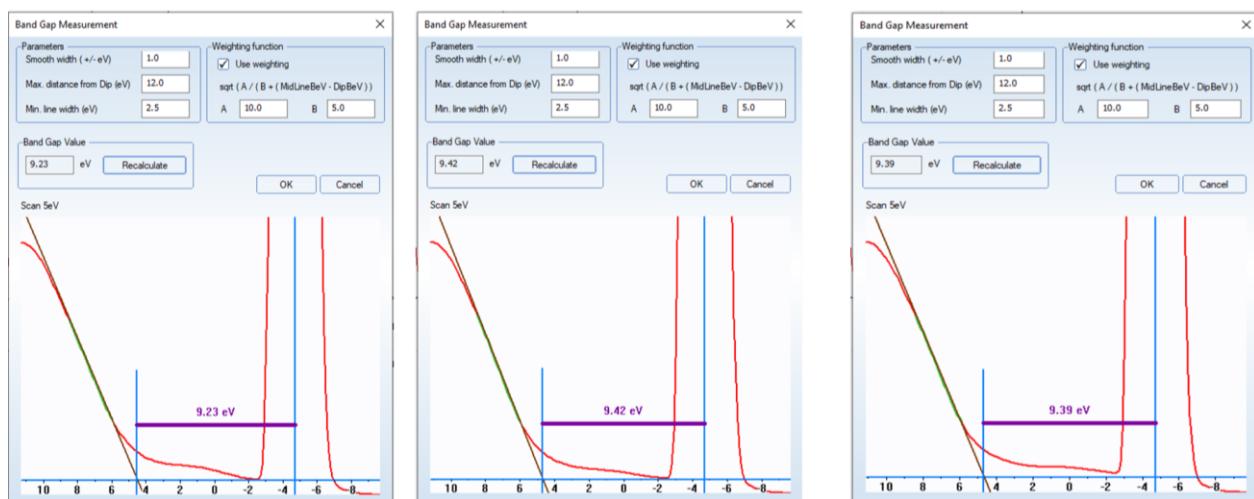

Photoluminescence of Eu³⁺-doped RbY₃F₁₀ nanoparticles – WP1, sub-activity 1.3

Figure 29(left) shows the X-ray pattern of prepared undoped RbY₃F₁₀:xEu³⁺ ($x = 0, 1, 5, 10, 30, 50$, and 75 mol%) presented with the International Centre for Diffraction Data (ICDD) Card No. 01-085-9553. The XRD of the sample doped with 75 mol% of Eu³⁺ displays a few additional peaks. This observation indicates that the high amount of Eu³⁺ leads to the crystallization of an additional compound to pure-phase RbY₃F₁₀. Therefore, Eu³⁺ co-doping of RbY₃F₁₀ is possible for Eu³⁺ concentrations equal to or less than 50 mol%. The photoluminescence emission spectra of all RbY₃F₁₀:xEu³⁺ ($x = 1, 5, 10, 30$, and 50 mol%) samples recorded at room temperature are displayed in Figure 29 (right, $\lambda_{ex} = 405$ nm).

Figure 29. PXRD patterns of RbY₃F₁₀:xEu³⁺ ($x = 0, 1, 5, 10, 30, 50$, and 75 mol%) nanophosphors (left) and room temperature emission spectra of RbY₃F₁₀:xEu³⁺ ($x = 1, 5, 10, 30$, and 50 mol%) recorded under $\lambda_{ex} = 405$ nm.

Additionally, a large band gap of approximately 9 eV has been observed for the fluoride host RbY₃F₁₀:Eu³⁺, as shown in Figure 30. This value aligns with literature data for other fluoride hosts, such as K₂SiF₆ and K₂TiF₆, which have band gaps around 8 eV.

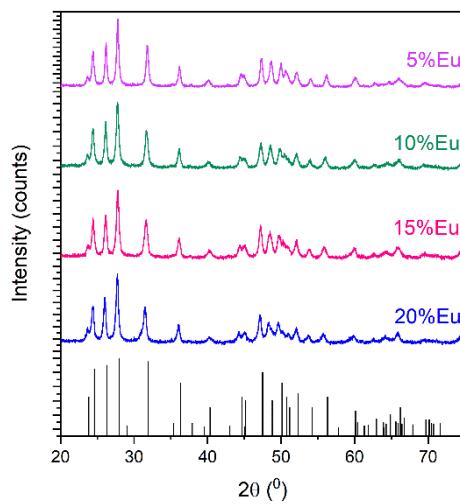


Figure 30. Band gap calculation of RbY₃F₁₀:10mol%Eu³⁺.

Properties of $\text{LuF}_3:\text{Eu}^{3+}$

Structure analysis of Eu^{3+} -doped LuF_3 – WP1, sub-activity 1.3

Figure 31 shows the X-ray pattern of $\text{LuF}_3:\text{xEu}$ ($x = 5, 10, 15$, and 20 mol\%) presented with the International Centre for Diffraction Data (ICDD) Card No. 00-032-0612. The X-ray diffraction examination of the synthesized samples proved a single phase in agreement with the orthorhombic Pmma structure of LuF_3 . Traces of contamination or other phase peaks were not observed in either set of samples, indicating that dopant Eu^{3+} ions were embedded into the LuF_3 lattice. Table 21 shows the results of the structural analysis: crystallite size (CS), microstrain values, unit cell parameters, unit cell volume (CV), and data fit parameters (R_{wp} , R_p , R_e , GOF) of $\text{LuF}_3:\text{xEu}$ nanophosphors. The CS of $\text{LuF}_3:\text{xEu}$ are in the range between 18.4 and 25.1 nm.

Figure 31. XRD patterns of $\text{LuF}_3:\text{xEu}$ ($x = 5, 10, 15$, and 20 mol\%) samples presented with the ICDD card No. 00-032-0612.

Table 21. Results of the structural analysis of $\text{LuF}_3:\text{xEu}$ nanophosphors, where $x = 5, 10, 15$, and 20 mol\% Eu^{3+}

ICDD 00-032-0612	$\text{LuF}_3:5\text{Eu}$	$\text{LuF}_3:10\text{Eu}$	$\text{LuF}_3:15\text{Eu}$	$\text{LuF}_3:20\text{Eu}$
CS (A)	193 (7)	208 (3)	184(17)	251(5)
Strain	0.13 (3)	0.33 (3)	0.213(5)	0.43(3)
GOF	2.1936	1.7154	1.8069	1.6841
Rwp	15.39%	14.08%	12.82%	11.65%
Rp	11.30%	10.72%	9.55%	8.78%
Re	7.02%	8.21%	7.09%	6.92%
a	6.1585(11)	6.1773(14)	6.2045(13)	6.2176(15)
b	6.7757(13)	6.7829 (15)	6.7997(14)	6.8061(17)
c	4.4836(9)	4.4733(11)	4.4734(10)	4.4589(12)

Photoluminescence spectra of Eu³⁺-doped LuF₃ - WP1, sub-activity 1.3

The room temperature photoluminescence spectra, recorded in the wavelength range 500 – 750 nm, are displayed in Figure 32 ($\lambda_{\text{ex}} = 393$ nm). Figure 32 shows that europium's photoluminescent intensity increases until the Eu³⁺ content reaches 10 mol%, while the further addition of Eu³⁺ decreases the emission intensity.

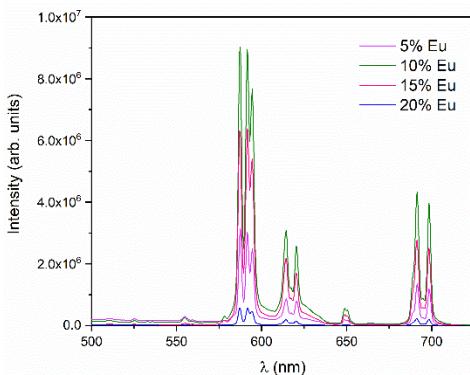


Figure 32. The room temperature photoluminescence spectra of LuF₃:xEu ($x = 5, 10, 15$, and 20 mol%) samples.

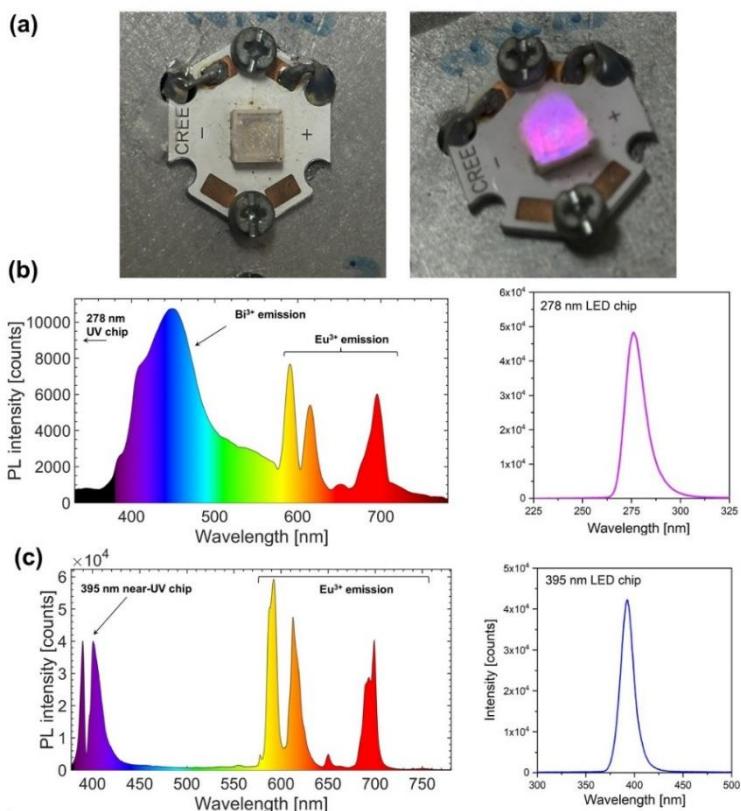
7. Summary of Deliverable D2.1 – Report on fabricated plant-grow-targeted LEDs based on near-UV and blue-semiconductor chip (WP2, month 18)

The presented document constitutes Deliverable D2.1 – *Report on fabricated plant-grow-targeted LEDs based on near-UV and blue semiconductor chips*, of the LEDtech-GROW project. It is a public document, delivered in the context of **WP2 - Design, fabrication, and LEDs performance**, **Subactivity 2.1 - A novel strategy for fabrication of plant-grow-targeted LEDs based on a near-UV chip** [month: 12-24] and **Subactivity 2.2 - Common strategy for fabrication of double-wavelength emitting pc-LEDs based on a blue chip** [month: 12-24]. This document presents a description of the design and fabrication process for LEDs used in plant growth applications, intended for sharing and distributing information related to the LEDtech-GROW project.

The list of selected phosphors for LED fabrication

A novel LED fabrication strategy for plant growth applications combines near-UV or UV semiconductor chips and representative triple-wavelength emitting single-component phosphors based on Bi³⁺ and Eu³⁺ activators and their efficient energy transfer (ET). This strategy offers broadband blue emission that may sensitize the various cryptochrome and phototropin photoreceptors (pterin (380), flavin (447 nm), Phototropin, and Zeitlupes, LOV (390, 457, and 480 nm). The list of two selected phosphors coated on the 278 nm LED chip is as follows:

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

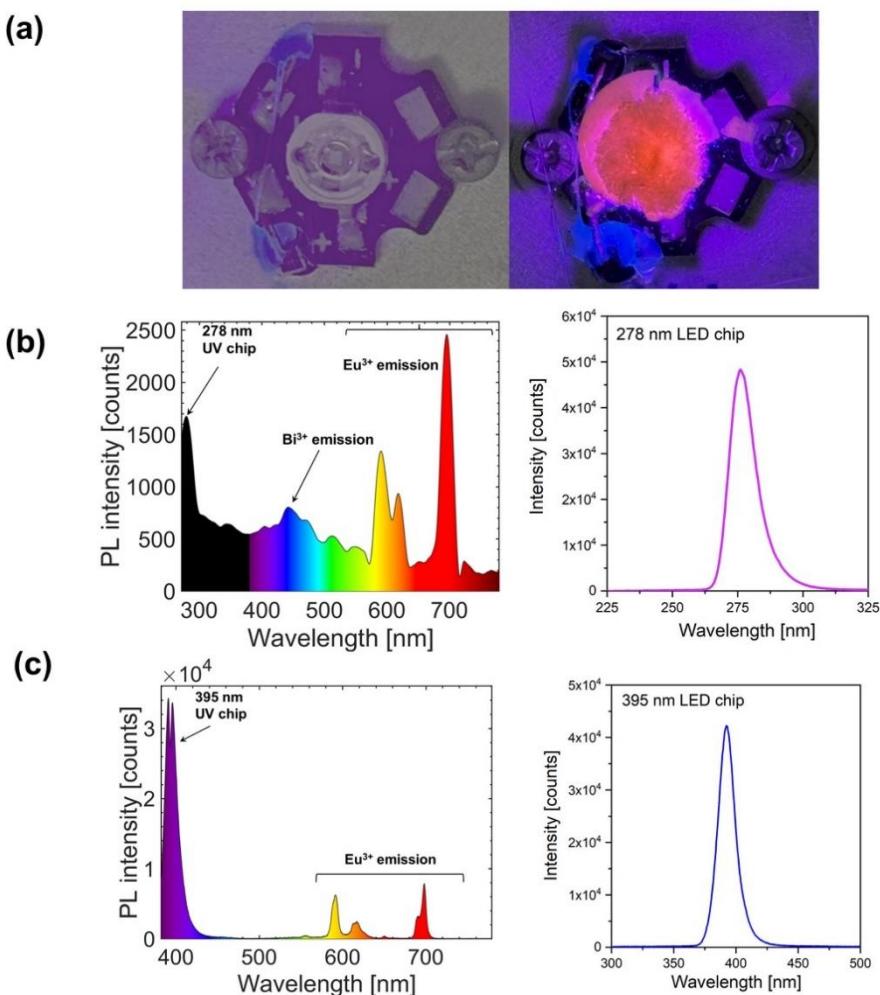

- $\text{SrF}_2: \text{Bi}^{3+}, \text{Eu}^{3+}$
- $\text{BaYF}_5: \text{Bi}^{3+}, \text{Eu}^{3+}$

The list of six selected phosphors coated on the 395 nm LED chip includes a representative red and far-red double-wavelength emitting Eu^{3+} -activated single-component phosphor is as follows:

- $\text{SrF}_2: \text{Bi}^{3+}, \text{Eu}^{3+}$
- $\text{BaYF}_5: \text{Bi}^{3+}, \text{Eu}^{3+}$
- $\text{Sr}_2\text{GdF}_7: \text{Eu}^{3+}$
- $\text{Sr}_2\text{GdF}_7: \text{Bi}^{3+}, \text{Eu}^{3+}$
- $\text{Sr}_2\text{LaF}_7: \text{Eu}^{3+}$
- $\text{RbY}_3\text{F}_{10}:\text{Eu}^{3+}$

LED fabrication *via* triple-wavelength emitting single-component $\text{SrF}_2:\text{Bi}^{3+}, \text{Eu}^{3+}$ phosphors

The $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on the (i) 278 nm and (ii) 395 nm LED chips (LED accessories purchased on the market). The mixed resin, which contains *Ceramabind* and $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor, was deposited on top of the LED chip using the Doctor blade (tape casting) technique, then dried for 48 hours.



This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Figure 33. (a) Photograph of the fabricated LED device emitting pinkish-violet light, using a 278 nm LED chip combined with $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor; (b) PL spectrum of the LED based on 278 nm chip, with the emission of the bare chip (without phosphor) shown on the right for comparison; (c) PL spectrum of the LED based on 395 nm chip, with the corresponding emission from the bare chip (without phosphor) shown on the right.

LED fabrication via triple-wavelength emitting single-component $\text{BaYF}_5: \text{Bi}^{3+}, \text{Eu}^{3+}$ phosphors

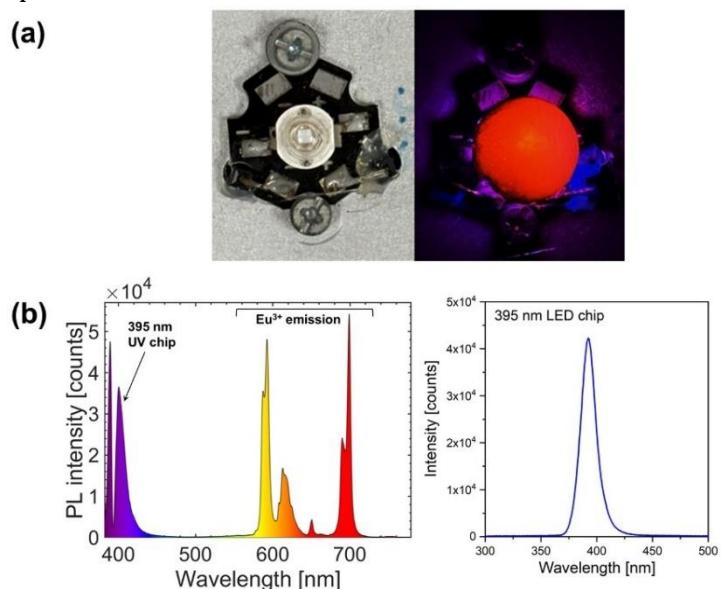

The $\text{BaYF}_5:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on the (i) 278 nm and (ii) 395 nm LED chips. The mixed resin was deposited on top of an LED chip using the Doctor blade (tape casting) technique and then dried for 48 hours.

Figure 34. (a) Fabricated LED device displaying violet light (LED based on 395 nm LED chip and $\text{BaYF}_5:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor); (b) PL spectrum of the LED based on 278 nm chip, with the emission of the bare chip (without phosphor) shown on the right for comparison; (c) PL spectrum of the LED based on 395 nm chip, with the corresponding emission from the bare chip (without phosphor) shown on the right.

LED fabrication *via* double-wavelength emitting single-component Sr_2GdF_7 : Bi^{3+} , Eu^{3+} phosphors

The $\text{Sr}_{2.01}\text{Eu}_{0.8}\text{Bi}_{0.01}\text{F}_7$ phosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on the near-UV LED chip. The mixed resin was deposited on top of a 395 nm LED chip using the Doctor blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, presented in Figure 35a, display a strong red light when the power supply is on. The PL spectrum of the fabricated LED, composed of a 395 nm chip and $\text{Sr}_{2.01}\text{Eu}_{0.8}\text{Bi}_{0.01}\text{F}_7$ phosphor, reveals strong emissions in the near-UV, orange/red, and far-red regions (see Figure 35b). Figure 35b (right) presents the emission of the 395 nm LED chip before the red phosphor was applied. A noticeable dip at 391 nm confirms the strong absorption of UV light by Eu^{3+} ions. Due to its strong emissions in the near-UV, orange/red, and far-red regions, this LED shows significant potential for indoor horticultural applications. As a result, the next phase of our work will focus on evaluating its performance in this context.

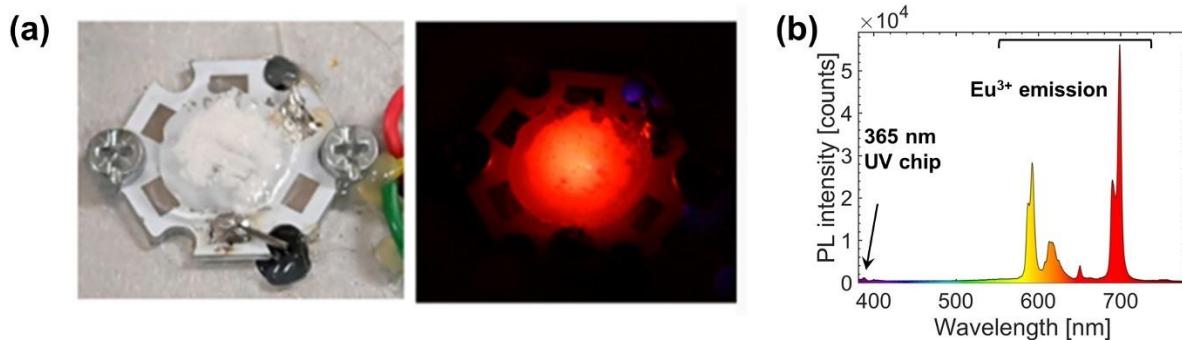


Figure 35. (a) A fabricated 395 nm-chip-based LED device comprising a semiconductor chip and $\text{Sr}_{2.01}\text{Eu}_{0.8}\text{Bi}_{0.01}\text{F}_7$ nanopowders displays a red light when the electrical power supply is on; and (b) PL spectrum of the LED based on 395 nm chip, with the corresponding emission from the bare chip (without phosphor) shown on the right.

LED fabrication *via* double-wavelength emitting single-component Sr_2GdF_7 : Eu^{3+} phosphors

The Sr_2GdF_7 :80% Eu^{3+} nanophosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on a 365 nm LED chip. The mixed resin was deposited on top of the LED chip using the Doctor blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, presented in Figure 36a, display a strong red light when the power supply is on. The PL spectrum of the fabricated LED, composed of a 365 nm chip and SGF:80Eu nanophosphor, reveals strong emissions in the red and far-red regions with noticeably weaker near-UV LED component (see Figure 36b).

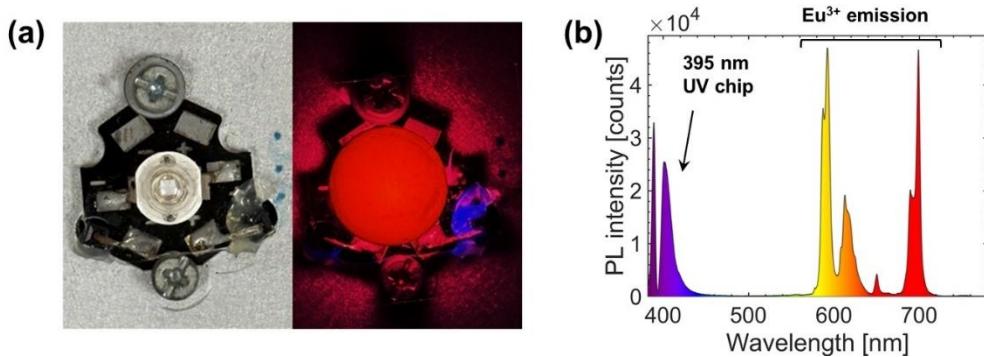

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

Figure 36. (a) A fabricated LED device comprising a 365 nm semiconductor chip and SGF_80Eu nanophosphors displays a red light when the electrical power supply is on; and (b) PL spectrum of the fabricated 365nm-chip-based LED.

LED fabrication via double-wavelength emitting single-component Sr_2LaF_7 : Eu^{3+} phosphors

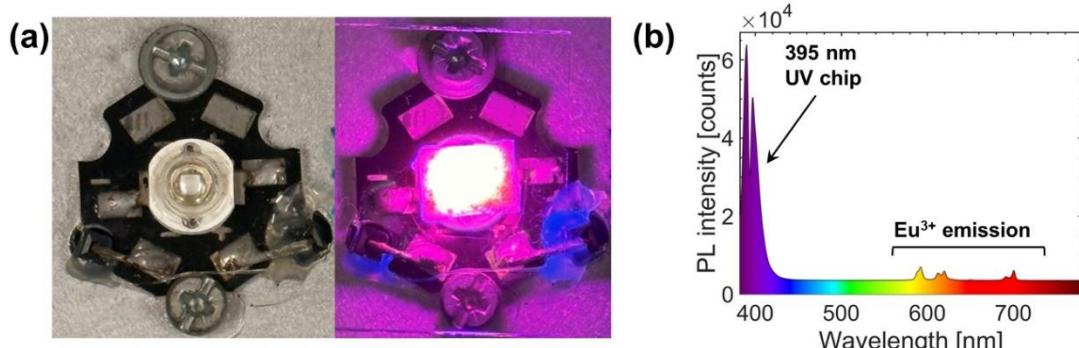

The $\text{Sr}_2\text{LaF}_7:50\text{Eu}^{3+}$ nanophosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on the 395 nm LED chip. The mixed resin, which contains *Ceramabind* and $\text{SLF}:50\text{Eu}$ phosphor, was deposited on top of the LED chip using the Doctor blade (tape casting) technique, then dried for 48 hours.

Figure 37. A fabricated LED device comprising a semiconductor chip and $\text{Sr}_2\text{LaF}_7:50\text{mol\%}\text{Eu}^{3+}$ nanophosphors displays a red light when the electrical power supply is on; PL spectrum of the fabricated 395nm-chip-based LED.

LED fabrication via double-wavelength emitting single-component $\text{RbY}_3\text{F}_{10}$: Eu^{3+} phosphors

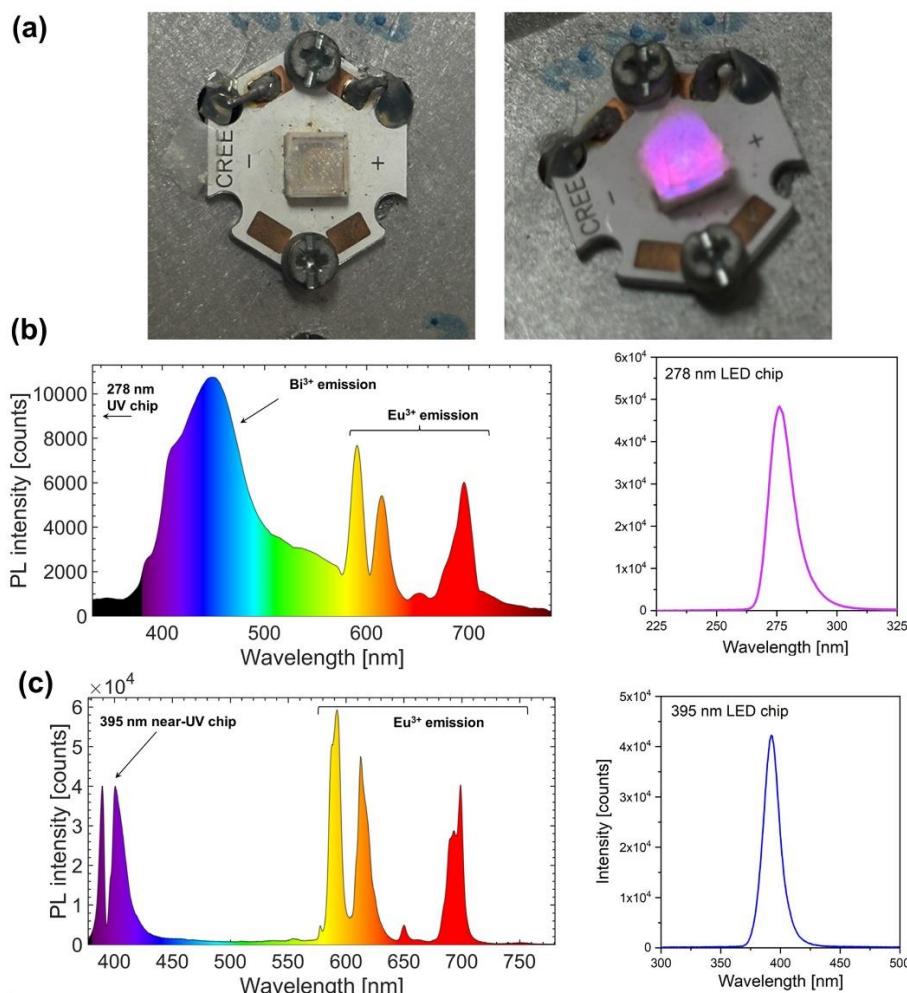
The $\text{RbY}_3\text{F}_{10}:50\text{Eu}^{3+}$ nanophosphor was separately mixed with high-temperature inorganic binder - *Aremco-CeramabindTM 643-2* before being deposited on the 395 nm LED chip. The mixed resin, which contains *Ceramabind* and $\text{RbY}_3\text{F}_{10}:50\text{Eu}^{3+}$ phosphor, was deposited on top of the LED chip using the Doctor blade (tape casting) technique, then dried for 48 hours.

Figure 38. A fabricated LED device comprising a semiconductor chip and $\text{RbY}_3\text{F}_{10}:50\text{mol\%Eu}^{3+}$ nanopowders displays a violet/pinkish light when the electrical power supply is on; and (b) PL spectrum of the fabricated 395nm-chip-based LED.

8. Summary of Deliverable D2.2 – Report on the LEDs performance (WP2, month 23)

Four selected Eu^{3+} -based phosphors, used as layers on the LED chips, are as follows:

- $\text{SrF}_2: \text{Bi}^{3+}, \text{Eu}^{3+}$
- $\text{Sr}_2\text{GdF}_7: \text{Eu}^{3+}$
- $\text{Sr}_2\text{LaF}_7: \text{Eu}^{3+}$
- $\text{RbY}_3\text{F}_{10}:\text{Eu}^{3+}$

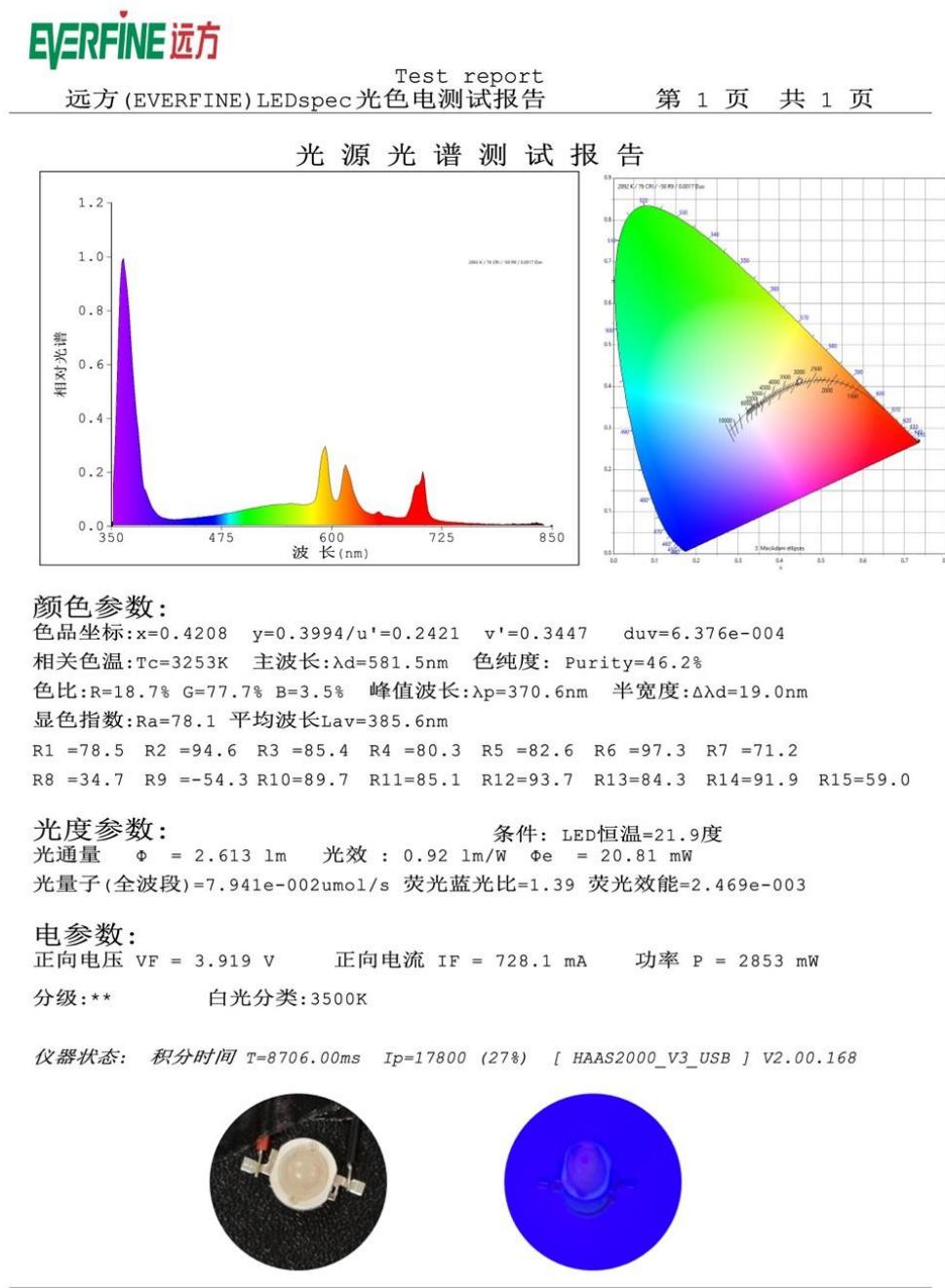

LED performance: LED based on a UV chip and $\text{SrF}_2:\text{Bi}^{3+}, \text{Eu}^{3+}$ phosphor

LED fabrication- methodology 1

The $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor was mixed separately with a high-temperature inorganic binder, Aremco-CeramabindTM 643-2, before being deposited onto (i) 278 nm and (ii) 395 nm LED chips (LED accessories purchased on the market). The resulting resin, containing Ceramabind and $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor, was deposited on top of the LED chip using the doctor blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, presented in Figure 39a, show a strong pink-violet light when the power supply is on. The PL spectrum of the fabricated LED, composed of a 278 nm chip and $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor, reveals strong emissions in the blue, orange/red, and far-red regions (see Figure 39b). Figure 39b (right) shows the emission of the 278 nm LED chip before the red phosphor was applied. Owing to its intense blue, orange/red, and far-red emissions, this LED holds great promise for indoor horticultural applications. Figure 39c shows the PL spectrum of the fabricated LED, composed of a 395 nm chip and $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor exhibits strong emissions in the near-UV, orange/red, and far-red regions. Figure 39c (right) shows the emission of the 395 nm LED chip before the red phosphor was applied.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

applied. A noticeable dip at 391 nm confirms UV absorption by Eu^{3+} ions.


Figure 39. (a) Photograph of the fabricated LED device emitting pinkish-violet light, using a 278 nm LED chip combined with $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor; (b) PL spectrum of the LED based on 278 nm chip, with the emission of the bare chip (without phosphor) shown on the right for comparison; (c) PL spectrum of the LED based on 395 nm chip, with the corresponding emission from the bare chip (without phosphor) shown on the right.

LED fabrication- methodology 2

The $\text{SrF}_2:10\%\text{Eu}^{3+},20\%\text{Bi}^{3+}$ phosphor was separately mixed with UV curing adhesive (LEAFTOP, SHENZHENSHI TEGU NEW MATERIALS CO., LTD) before being deposited on the 395 nm and 365 nm UV chips (LED accessories purchased on the market) for a comparative study. All samples were coated on the semiconductor chip with phosphor-adhesive layers of varying thicknesses to optimize PL efficacy. The LEDs' performance operating at around 3.0 V at various driving currents was monitored, and the following were determined: (i) PL spectrum of fabricated LEDs; (ii) Commission Internationale de l'Eclairage (CIE) spectrum of fabricated LEDs; (iii) Correlated Color Temperature; (iv) Color Rendering Index; (v) Luminous Flux; and (vi) Luminous Efficacy of fabricated LEDs. The photoelectric & colorimetric properties of the fabricated LEDs were measured by an Auto-Temperated LED Opto-Electronic Analyzer (ATA-500). Photographs of the fabricated LED device under daylight and 365 nm UV illumination are shown in Figure 40. The photoluminescence (PL) spectrum of the LED fabricated with a 365 nm chip and $\text{SrF}_2:10\%\text{Eu}^{3+}, 20\%\text{Bi}^{3+}$ phosphor, the LED exhibits intense UV emission, along

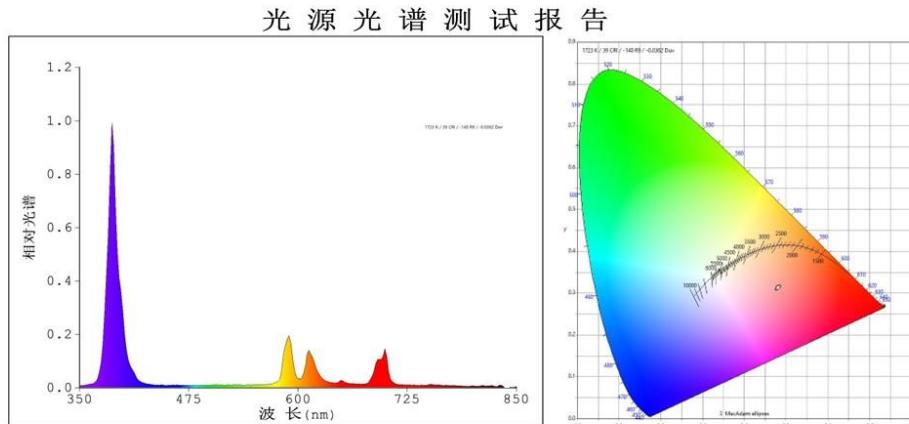
This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth – LEDtech-GROW

with orange/red and far-red emissions (Figure 40). The absence of blue emission indicates that this LED configuration does not meet the spectral requirements for indoor plant cultivation. Consequently, an alternative LED design was developed by combining the same phosphor with a 395 nm UV chip, as shown in Figure 40.

Figure 40. Photoluminescence (PL) spectrum of the LED fabricated using a 365 nm chip and $SrF_2:10\%Eu^{3+}, 20\%Bi^{3+}$ phosphor (driving current: 1000 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.

The performance of the LED based on $SrF_2:10\%Eu^{3+}, 20\%Bi^{3+}$ phosphor and a 365 nm chip, operating at around 3.0 V with a driving current of 50 mA, is summarized as follows: (i) the PL spectrum of the fabricated LED shows good overlap with the photosynthetically active radiation (PAR) range of plant

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth - LEDtech-GROW


photoreceptors, with pronounced blue and red emission components; (ii) CIE chromaticity coordinates of $x = 0.3759$ and $y = 0.2743$, corresponding to a pinkish emission; (iii) a correlated color temperature (CCT) of 2858 K; (iv) a color rendering index (CRI, Ra) of 67.4; (v) a luminous flux (Φ) of 0.7146 lm; and (vi) a luminous efficacy of 4.72 lm/W.

The PL spectrum further reveals intense emission in the UV-blue region, followed by orange/red and far-red emissions. Collectively, these results indicate that the fabricated LED is a promising candidate for indoor horticultural applications.

EVERFINE 远方

Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

颜色参数:

色品坐标: $x=0.3759$ $y=0.2695$ $u'=0.2743$ $v'=0.2949$ $duv=-5.758e-002$

相关色温: $Tc=2858K$ 主波长: $\lambda_d=513.0nm$ 色纯度: $Purity=13.9\%$

色比: $R=22.5\%$ $G=73.7\%$ $B=3.8\%$ 峰值波长: $\lambda_p=396.5nm$ 半宽度: $\Delta\lambda_d=10.8nm$

显色指数: $Ra=67.4$ 平均波长 $\lambda_{av}=399.6nm$

$R1=77.8$ $R2=89.3$ $R3=64.1$ $R4=70.9$ $R5=87.3$ $R6=76.0$ $R7=51.1$

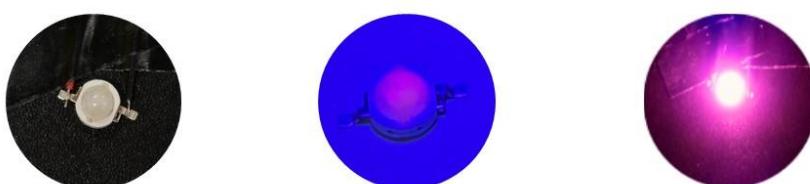
$R8=22.7$ $R9=-62.8$ $R10=79.9$ $R11=82.9$ $R12=19.1$ $R13=82.8$ $R14=80.1$ $R15=63.1$

光度参数:

条件: LED恒温=22.0度

光通量 $\Phi = 0.7146$ lm 光效: 4.72 lm/W $\Phi_e = 11.92$ mW

光量子(全波段)= $4.364e-002$ umol/s 荧光蓝光比=0.219 荧光效能= $1.400e-002$


电参数:

正向电压 $V_F = 3.028$ V 正向电流 $I_F = 50.0$ mA 功率 $P = 151.4$ mW

分级: **

白光分类: OUT

仪器状态: 积分时间 $T=10528.00ms$ $I_p=37634$ (57%) [HAAS2000_V3_USB] V2.00.168

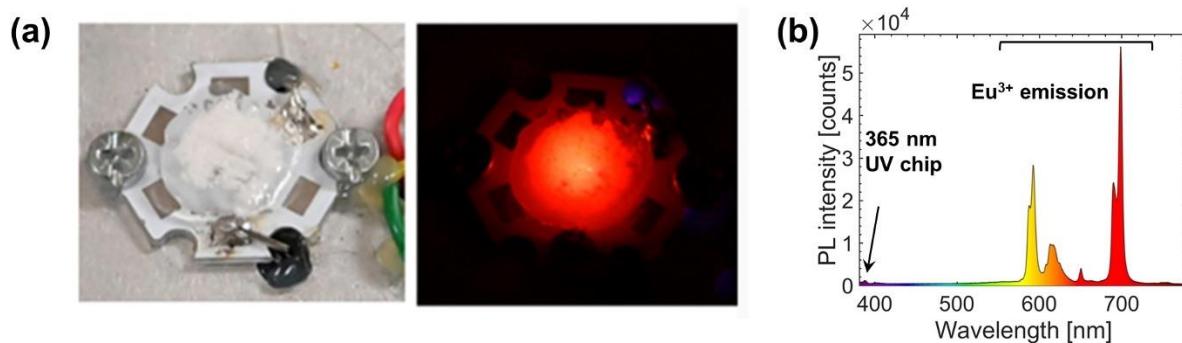


Figure 41. PL spectrum of the LED fabricated using a 395 nm chip and $SrF_2:10\%Eu^{3+}, 20\%Bi^{3+}$ phosphor (driving current: 50 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.

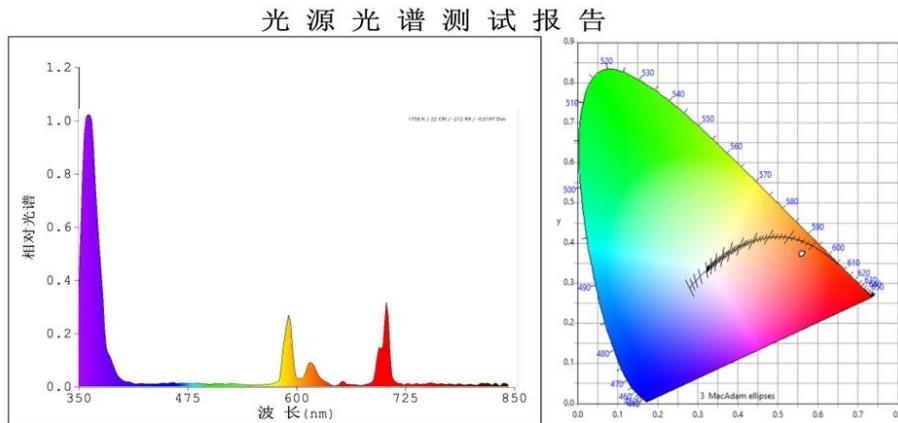
LED performance: LED based on a UV chip and $\text{Sr}_2\text{GdF}_7:\text{Eu}^{3+}$ phosphor

LED fabrication - methodology 1

The $\text{Sr}_2\text{GdF}_7:80\%\text{Eu}^{3+}$ nanophosphor was mixed separately with a high-temperature inorganic binder, Aremco-CeramabindTM 643-2, before being deposited onto a 365 nm LED chip. The resin mixture was deposited on top of the LED chip using the doctor blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, shown in Figure 42a, show strong red light when the power supply is on. The PL spectrum of the fabricated LED, composed of a 365 nm chip and SGF:80Eu nanophosphor, shows strong emissions in the red and far-red regions, with a noticeably weaker near-UV LED component (see Figure 42b).

Figure 42. (a) A fabricated LED device comprising a 365 nm semiconductor chip and SGF_80Eu nanopowders displays a red light when the electrical power supply is on; and (b) PL spectrum of the fabricated 365nm-chip-based LED.

LED fabrication- methodology 2


The $\text{Sr}_2\text{GdF}_7:80\%\text{Eu}^{3+}$ phosphor was mixed separately with UV-curing adhesive (LEAFTOP, SHENZHENGSHI TEGU NEW MATERIALS CO., LTD) and then deposited onto 395 nm and 365 nm near-UV chips (LED accessories purchased on the market) for a comparative study. LED performance was evaluated at an operating voltage of approximately 3.0 V under driving currents of 20 and 50 mA. The following parameters were determined: (i) the PL spectra of the fabricated LEDs and their correspondence with the photosynthetically active radiation (PAR) range of plant photoreceptors; (ii) CIE chromaticity coordinates; (iii) correlated color temperature (CCT); (iv) color rendering index (CRI); (v) luminous flux; and (vi) luminous efficacy. The photoelectric and colorimetric properties of the fabricated LEDs were measured using an auto-temperature-controlled LED optoelectronic analyzer (ATA-500).

Photographs of the fabricated LED device under daylight, 365 nm UV illumination, and electrical operation are shown in Figure 43. Under a driving current of 50 mA, the PL spectrum of the LED fabricated using a 365 nm chip and $\text{Sr}_2\text{GdF}_7:80\%\text{Eu}^{3+}$ phosphor shows strong UV emission, along with orange/red and far-red emission bands (Figure 43). Because blue emission is absent, the resulting PL output appears reddish and does not meet the spectral requirements for indoor plant cultivation. Consequently, an alternative LED configuration was developed by combining the same phosphor with a 395 nm UV chip and operating it at various driving currents, as presented in Figures 44 and 45.

EVERFINE 远方

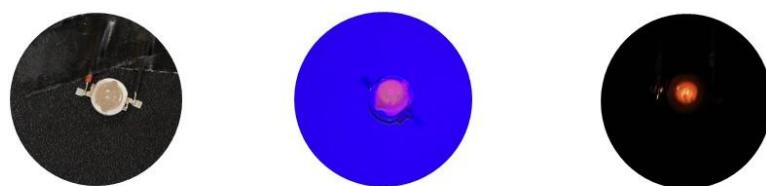
Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

颜色参数:

色品坐标: $x=0.4543$ $y=0.3477$ $u'=0.2901$ $v'=0.3331$ $duv=-2.403e-002$ 相关色温: $T_c=2257K$ 主波长: $\lambda_d=600.8nm$ 色纯度: $Purity=40.7\%$ 色比: $R=18.8\%$ $G=78.1\%$ $B=3.1\%$ 峰值波长: $\lambda_p=372.1nm$ 半宽度: $\Delta\lambda_d=20.4nm$ 显色指数: $R_a=45.8$ 平均波长 $\lambda_{av}=378.0nm$ $R1=48.9$ $R2=94.4$ $R3=39.5$ $R4=40.2$ $R5=61.3$ $R6=83.4$ $R7=28.3$ $R8=-29.5$ $R9=-157.7$ $R10=90.5$ $R11=52.8$ $R12=57.4$ $R13=66.1$ $R14=63.4$ $R15=20.7$

光度参数:


条件: LED恒温=22.0度

光通量 $\Phi=0.1624\text{ lm}$ 光效: 0.98 lm/W $\Phi_e=4.692\text{ mW}$ 光量子(全波段)= $1.599e-002\text{ umol/s}$ 荧光蓝光比=0.373 荧光效能= $3.267e-003$

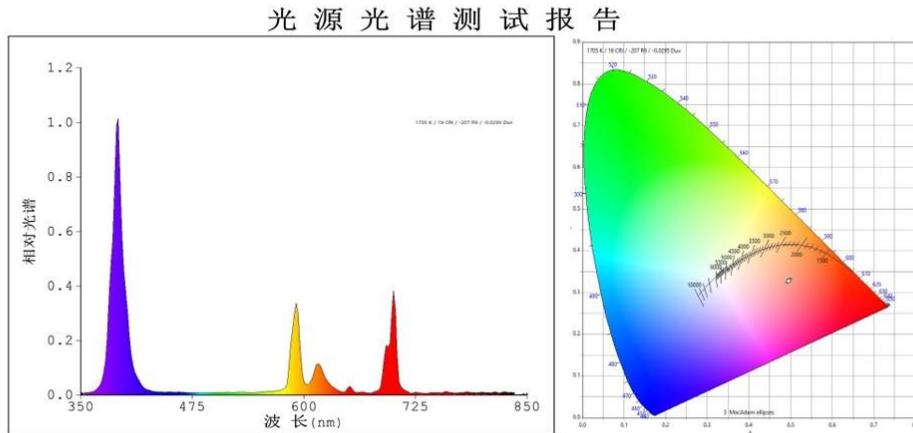
电参数:

正向电压 $V_F=3.328\text{ V}$ 正向电流 $I_F=50.0\text{ mA}$ 功率 $P=166.4\text{ mW}$

分级: ** 白光分类: OUT

仪器状态: 积分时间 $T=12386.00ms$ $I_p=15074 (23\%)$ [HAAS2000_V3_USB] V2.00.168

Figure 43. PL spectrum of the LED fabricated using a 365 nm chip and SGF_80Eu³⁺ phosphor (driving current: 50 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.


The performance characteristics of the LED fabricated using SGF:80%Eu phosphor with a 395 nm chip (Figure 44), operated at approximately 3.0 V and a driving current of 20 mA, are summarized as follows: (i) the PL spectrum of the fabricated LED shows good agreement with the photosynthetically active radiation (PAR) range of plant photoreceptors, featuring strong near-UV/blue, orange/red, and deep-red emissions; (ii) CIE chromaticity coordinates of $x=0.4165$ and $y=0.2643$, corresponding to a pinkish emission; (iii) a correlated color temperature (CCT) of 1977 K; (iv) a color rendering index (CRI, Ra) of 29.3; (v) a luminous flux (Φ) of 0.2295 lm; and (vi) a luminous efficacy of 3.89 lm/W.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth - LEDtech-GROW

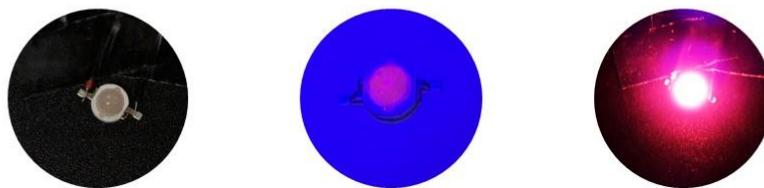
EVERFINE 远方

Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

颜色参数:

色品坐标: $x=0.4165$ $y=0.2643/u'=0.3121$ $v'=0.2971$ $duv=-6.237e-002$
 相关色温: $Tc=1977K$ 主波长: $\lambda d=502.8nm$ 色纯度: $Purity=25.3\%$
 色比: $R=21.1\%$ $G=76.7\%$ $B=2.2\%$ 峰值波长: $\lambda p=396.5nm$ 半宽度: $\Delta \lambda d=8.5nm$
 显色指数: $Ra=29.3$ 平均波长 $Lav=399.5nm$
 $R1=25.2$ $R2=88.2$ $R3=26.9$ $R4=3.1$ $R5=34.4$ $R6=92.4$ $R7=13.7$
 $R8=-49.0$ $R9=-187.9$ $R10=91.7$ $R11=7.4$ $R12=59.5$ $R13=46.9$ $R14=54.8$ $R15=8.2$


光度参数:

条件: LED恒温=22.0度
 光通量 $\Phi = 0.2295 \text{ lm}$ 光效: 3.89 lm/W $\Phi e = 4.377 \text{ mW}$
 光量子(全波段)= $1.617e-002 \text{ umol/s}$ 荧光蓝光比=0.23 荧光效能= $1.365e-002$

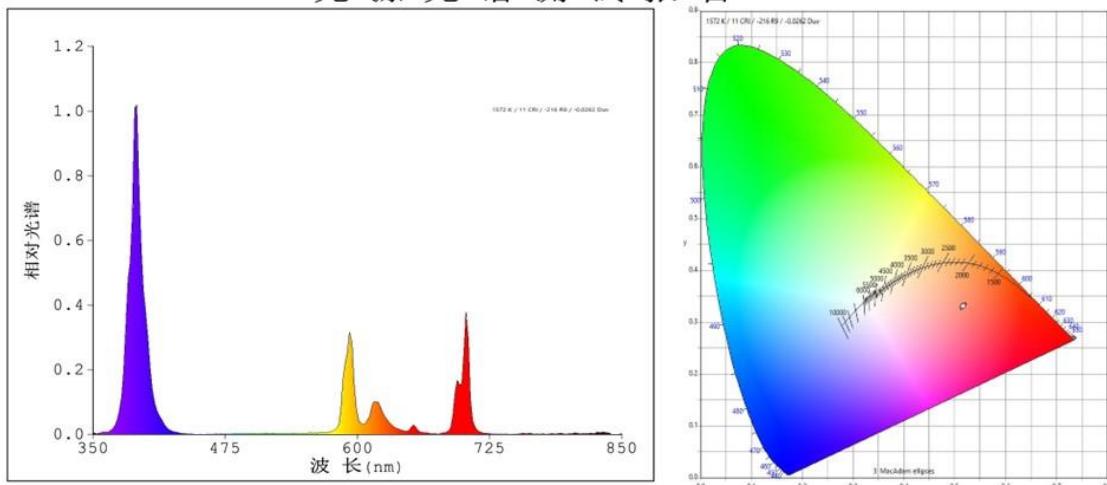
电参数:

正向电压 $V_F = 2.949 \text{ V}$ 正向电流 $I_F = 20.0 \text{ mA}$ 功率 $P = 59.04 \text{ mW}$
 分级: ** 白光分类: OUT

仪器状态: 积分时间 $T=33353.00ms$ $I_p=51492 (79\%)$ [HAAS2000_V3_USB] V2.00.168

Figure 44. PL spectrum of the LED fabricated using a 395 nm chip and SGF_80Eu³⁺ phosphor (driving current: 20 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.

The performance of LEDs based on SGF:80%Eu phosphor and a 395 nm chip (see Figure 45), operating at around 3.0 V with a driving current of 50 mA, is as follows: (i) The PL spectrum of the fabricated LEDs matches the PAR spectrum of plant photoreceptors, with the most intense near-UV-blue, orange/red, and deep red emissions; (ii) CIE chromaticity coordinates $x=0.4100$, $y=0.2531$, showing pinkish LED emission; (iii) Correlated Color Temperature CCT=1951K; (iv) Color Rendering Index Ra=26.0; (v) Luminous Flux $\Phi=0.6623 \text{ lm}$; and (vi) Luminous Efficacy of the fabricated LEDs 4.41 lm/W. The PL spectrum reveals strong emissions in the UV-blue, followed by orange/red and far-red regions. All findings suggest that this LED holds great promise for indoor horticultural applications.


This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth - LEDtech-GROW

EVERFINE 远方

Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

光源光谱测试报告

颜色参数:

色品坐标: $x=0.4100$ $y=0.2531/u'=0.3144$ $v'=0.2911$ $duv=-6.853e-002$ 相关色温: $T_c=1951K$ 主波长: $\lambda_d=-506.1nm$ 色纯度: $Purity=23.3\%$ 色比: $R=21.4\%$ $G=76.3\%$ $B=2.3\%$ 峰值波长: $\lambda_p=396.6nm$ 半宽度: $\Delta\lambda_d=8.6nm$ 显色指数: $Ra=26.0$ 平均波长 $L_{avg}=399.4nm$ $R1=22.1$ $R2=88.8$ $R3=20.6$ $R4=-3.6$ $R5=31.6$ $R6=91.9$ $R7=9.5$ $R8=-53.2$ $R9=-193.0$ $R10=92.9$ $R11=-0.2$ $R12=59.1$ $R13=45.1$ $R14=50.9$ $R15=6.6$

光度参数:

条件: LED恒温=22.0度

光通量 $\Phi=0.6623\text{ lm}$ 光效: 4.41 lm/W $\Phi_e=13.64\text{ mW}$ 光量子(全波段)= $5.004e-002\text{ umol/s}$ 荧光蓝光比=0.212 荧光效能= $1.564e-002$

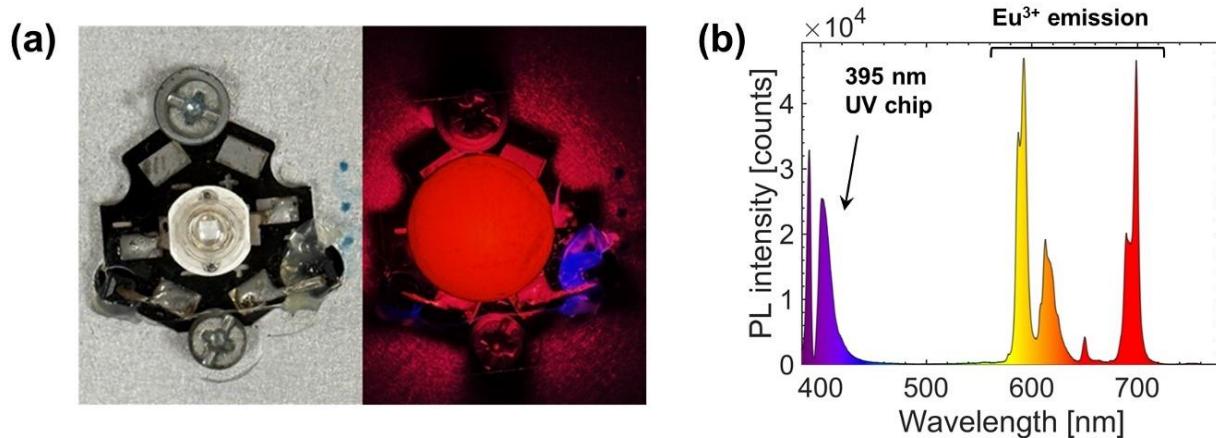
电参数:

正向电压 $V_F=3.004\text{ V}$ 正向电流 $I_F=50.0\text{ mA}$ 功率 $P=150.2\text{ mW}$

分级: ** 白光分类: OUT

仪器状态: 积分时间 $T=8338.00ms$ $I_p=34498\text{ (53\%)}$ [HAAS2000_V3_USB] V2.00.168

Figure 45. PL spectrum of the LED fabricated using a 395 nm chip and SGF_80Eu³⁺ phosphor (driving current: 50 mA); corresponding CIE chromaticity diagram of the LED emission; and key performance characteristics of the LED.


LED performance: LED based on a UV chip and Sr₂LaF₇:Eu³⁺ phosphor

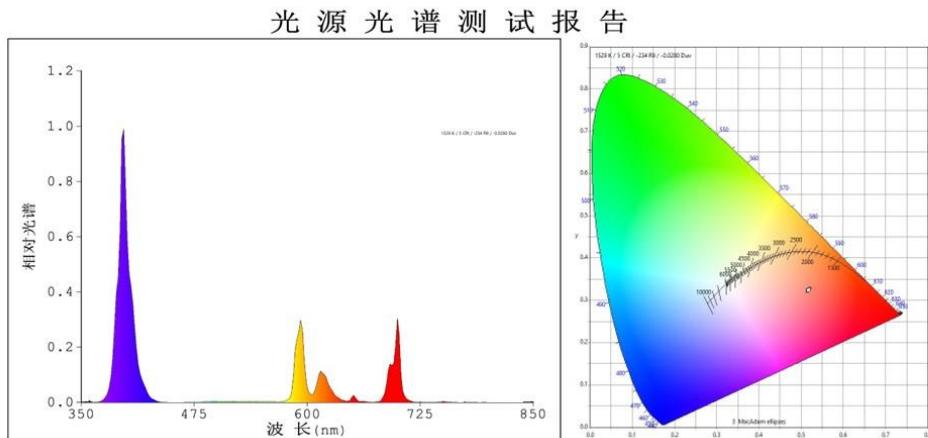
LED fabrication - methodology 1

The Sr₂LaF₇:50Eu³⁺ nanophosphor was mixed separately with a high-temperature inorganic binder, Aremco-CeramabindTM 643-2, before being deposited on the 395 nm LED chip. The resulting resin, containing Ceramabind and SLF:50Eu phosphor, was deposited on the LED chip using the doctor

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412, LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth - LEDtech-GROW

blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, shown in Figure 46a, show strong red light when the power supply is on. The PL spectrum of the fabricated LED, composed of a 395 nm chip and $\text{Sr}_2\text{LaF}_7:50\text{mol\%Eu}^{3+}$ phosphor, shows strong emissions in the near-UV, orange/red, and far-red regions. Figure 46b (right) shows the emission of the 395 nm LED chip before the red phosphor was applied. A noticeable dip at 391 nm confirms absorption of UV light by Eu^{3+} ions. Consequently, this LED demonstrates strong potential for application in indoor horticultural systems.

Figure 46. A fabricated LED device comprising a semiconductor chip and $\text{Sr}_2\text{LaF}_7:50\text{mol\%Eu}^{3+}$ nanopowders displays a red light when the electrical power supply is on; PL spectrum of the fabricated 395 nm-chip-based LED.


The $\text{Sr}_2\text{LaF}_7:50\text{mol\%Eu}^{3+}$ phosphor was mixed separately with UV curing adhesive (LEAFTOP, SHENZHENGSHI TEGU NEW MATERIALS CO., LTD) and then deposited onto a 395 nm LED chip (LED accessories purchased on the market). LED performance was evaluated at an operating voltage of approximately 3.0 V and a driving current of 50 mA (Figure 47). The results show that: (i) the PL spectrum of the fabricated LED exhibits near-UV/blue, orange/red, and deep-red emissions that align well with the PAR spectrum of plant photoreceptors; (ii) the CIE chromaticity coordinates are $x = 0.3993$ and $y = 0.3108$, corresponding to a pinkish emission; (iii) the correlated color temperature (CCT) is 2011 K; (iv) the color rendering index (CRI, Ra) is 29.3; (v) the luminous flux (Φ) is 0.9040 lm; and (vi) the luminous efficacy is 6.02 lm/W.

Photographs of the fabricated LED device based on a 395 nm UV chip, taken under daylight, under 365 nm UV illumination, and during electrical operation, are also shown in Figure 47. When powered on, the device emits an intense pinkish-violet light. Owing to its strong blue, orange/red, and far-red emission components, this LED demonstrates significant potential for indoor horticultural applications.

EVERFINE 远方

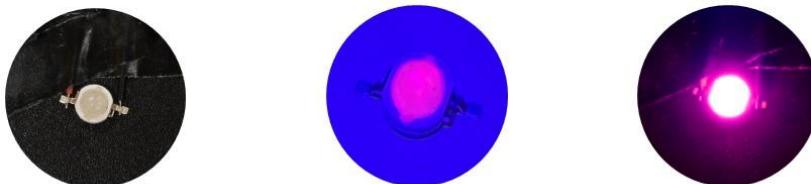
Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

颜色参数:

色品坐标: $x=0.3993$ $y=0.2448$ $u'=0.3108$ $v'=0.2858$ $d_{uv}=-7.348e-002$
 相关色温: $T_c=2011K$ 主波长: $\lambda_d=510.6nm$ 色纯度: Purity=20.8%
 色比: $R=22.3\%$ $G=75.2\%$ $B=2.5\%$ 峰值波长: $\lambda_p=397.3nm$ 半宽度: $\Delta\lambda_d=9.1nm$
 显色指数: $R_a=29.3$ 平均波长 $Lav=400.6nm$
 $R1=27.1$ $R2=90.3$ $R3=24.0$ $R4=1.7$ $R5=36.8$ $R6=90.9$ $R7=11.7$
 $R8=-47.6$ $R9=-180.6$ $R10=92.6$ $R11=5.3$ $R12=55.6$ $R13=49.1$ $R14=53.5$ $R15=13.7$

光度参数:


光通量 $\Phi = 0.9040 lm$ 光效: $6.02 lm/W$ $\Phi_e = 17.03 mW$
 光量子(全波段) = $6.263e-002 umol/s$ 荧光蓝光比 = 0.216 荧光效能 = $1.994e-002$

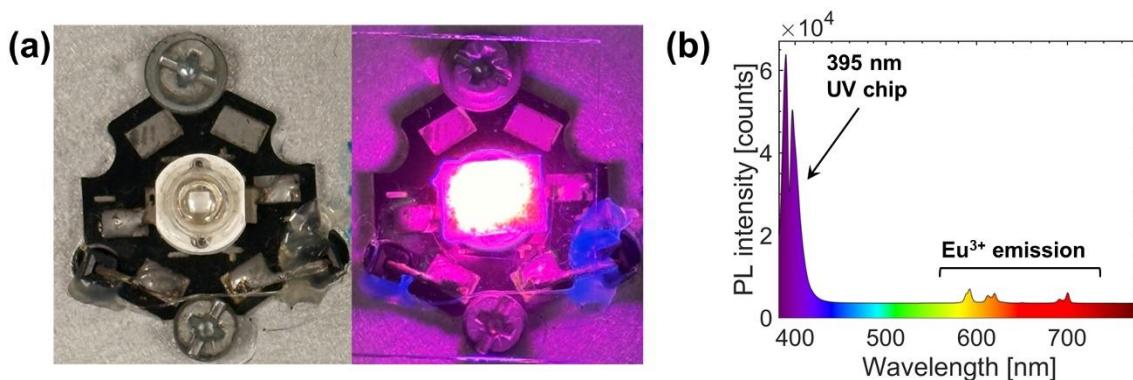
电参数:

正向电压 $V_F = 3.004 V$ 正向电流 $I_F = 50.0 mA$ 功率 $P = 150.2 mW$

分级: ** 白光分类: OUT

仪器状态: 积分时间 $T=7732.00ms$ $I_p=38327 (58\%)$ [HAAS2000_V3_USB] V2.00.168

Figure 47. PL spectrum of the LED fabricated using a 395 nm chip and $Sr_2LaF_7:50mol\%Eu^{3+}$ phosphor (driving current: 50 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.


LED performance: LED based on a UV chip and $RbY_3F_{10}: Eu^{3+}$ phosphor

LED fabrication - methodology 1

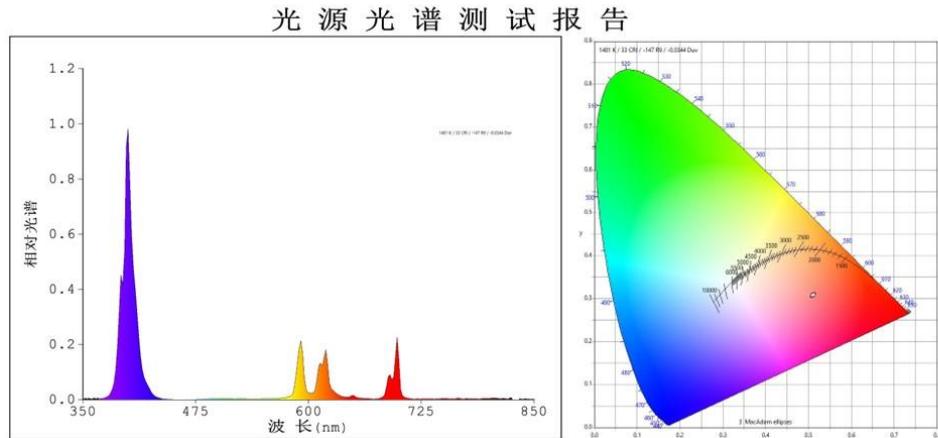
The $RbY_3F_{10}:50Eu^{3+}$ nanophosphor was mixed separately with a high-temperature inorganic

*This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412,
 LED technology based on bismuth-sensitized Eu^{3+} luminescence for cost-effective indoor plant growth - LEDtech-GROW*

binder, Aremco-CeramabindTM 643-2, before being deposited onto the 395 nm LED chip. The resulting resin, containing Ceramabind and $\text{RbY}_3\text{F}_{10}:50\text{Eu}^{3+}$ phosphor, was deposited on the LED chip using the doctor blade (tape casting) technique, then dried for 48 hours. Photographs of the fabricated LED device, shown in Figure 48a, display a strong violet/pinkish light when the power supply is on. The PL spectrum of the fabricated LED, comprising a 395 nm chip and $\text{RbY}_3\text{F}_{10}:50\text{Eu}^{3+}$ phosphor, exhibits strong emissions in the near-UV, orange/red, and far-red regions (see Figure 48b). A minor dip at 391 nm indicates low absorption of near-UV light by Eu^{3+} ions. The insufficient intensity of red and far-red emissions makes this LED unsuitable for effective indoor horticultural use. Our upcoming research will focus on the improvement of red and far-red light components.

Figure 48. A fabricated LED device comprising a semiconductor chip and $\text{RbY}_3\text{F}_{10}:50\text{mol\%Eu}^{3+}$ nanopowders displays a violet/pinkish light when the electrical power supply is on; and (b) PL spectrum of the fabricated 395nm-chip-based LED.

LED fabrication - methodology 2


The $\text{RbY}_3\text{F}_{10}:50\text{Eu}^{3+}$ phosphor was mixed separately with UV-curing adhesive (LEAFTOP, SHENZHENGTECH CO., LTD) and then deposited onto the 395 nm near-UV chip (LED accessories purchased on the market). The LED performance was evaluated at an operating voltage of approximately 3.0 V and a driving current of 50 mA (Figure 49). The analysis indicates that: (i) the PL spectrum of the fabricated LED exhibits near-UV/blue, orange/red, and deep-red emissions that closely match the photosynthetically active radiation (PAR) range of plant photoreceptors; (ii) the CIE chromaticity coordinates are $x = 0.3895$ and $y = 0.2188$, corresponding to a pinkish emission; (iii) the correlated color temperature (CCT) is 1867 K; (iv) the color rendering index (CRI, Ra) is 38.3; (v) the luminous flux (Φ) is 0.8361 lm; and (vi) the luminous efficacy is 5.58 lm/W.

Photographs of the fabricated LED device based on a 395 nm UV chip, recorded under daylight, 365 nm UV illumination, and electrical operation, are shown in Figure 49. When powered on, the device emits intense pinkish-violet light. Owing to its strong blue, orange/red, and far-red emission components, this LED shows considerable potential for indoor horticultural applications. Additionally, a distinct dip at 391 nm confirms the absorption of UV radiation by Eu^{3+} ions.

EVERFINE 远方

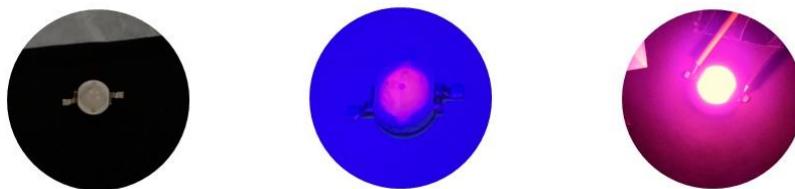
Test report
远方 (EVERFINE) LEDspec 光色电测试报告

第 1 页 共 1 页

颜色参数:

色品坐标: $x=0.3895$ $y=0.2188$ $u'=0.3215$ $v'=0.2709$ $duv=-8.915e-002$
 相关色温: $T_c=1867K$ 主波长: $\lambda_d=-521.7\text{nm}$ 色纯度: Purity=22.9%
 色比: $R=32.7\%$ $G=64.5\%$ $B=2.8\%$ 峰值波长: $\lambda_p=396.6\text{nm}$ 半宽度: $\Delta\lambda_d=8.3\text{nm}$
 显色指数: $Ra=38.3$ 平均波长 $Lav=399.6\text{nm}$
 $R1=50.1$ $R2=90.4$ $R3=21.5$ $R4=22.2$ $R5=61.3$ $R6=68.8$ $R7=15.1$
 $R8=-23.4$ $R9=-120.0$ $R10=70.4$ $R11=34.3$ $R12=31.7$ $R13=72.3$ $R14=54.3$ $R15=40.3$

光度参数:


条件: LED恒温=26.0度
 光通量 $\phi=0.8361\text{ lm}$ 光效: 5.58 lm/W $\phi_e=20.92\text{ mW}$
 光量子(全波段)= $7.516e-002\text{ umol/s}$ 荧光蓝光比=0.158 荧光效能= $1.878e-002$

电参数:

正向电压 $V_F=2.999\text{ V}$ 正向电流 $I_F=50.0\text{ mA}$ 功率 $P=150.0\text{ mW}$

分级: ** 白光分类: OUT

仪器状态: 积分时间 $T=6016.00\text{ms}$ $I_p=39874$ (61%) [HAAS2000_V3_USB] V2.00.168

Figure 49. PL spectrum of the LED fabricated using a 395 nm chip and $\text{RbY}_3\text{F}_{10}:50\text{mol\%Eu}^{3+}$ phosphor (driving current: 50 mA); corresponding CIE chromaticity diagram of the LED emission; key performance characteristics of the LED; and photographs of the fabricated device.

9. Summary of Deliverable D3.1 – Report on the professional development of young and early-stage researchers (WP3, month 24)

Deliverable D3.1 – *Report on the professional development of young and early-stage researchers*, of the LEDtech-GROW project is a public document, delivered in the context of **WP3 - Professional development of young and early-stage researchers**, **Subactivity 3.1 - Research Management Capacity Enhancement** [month: 6-20], **Subactivity 3.2 - Innovation and IPR Management** [month: 6-20], and **Subactivity 3.3 - Research Capacity Building and Knowledge Transfer** [month: 6-24]. This document outlines the activities implemented to enhance proposal writing and project management skills, raise awareness of intellectual property and patent protection, ensure compliance with open science principles, and advance specialized scientific knowledge. Detailed information on these activities is available on the project website at <https://ledtechgrow-promis.org/Deliverables/>. Overall, WP3 plays a crucial role in ensuring the long-term sustainability, impact, and visibility of the LEDtech-GROW project.

The LEDtech-GROW project recognizes that the success of research initiatives depends not only on scientific excellence but also on the continuous professional development of researchers. In this context, Work Package 3 (WP3) is dedicated to strengthening the skills and competencies of young and early-stage researchers, enabling them to operate effectively within the national and international research community.

WP3 – Capacity Building, Professional Development, and Research Support

During the project, LEDtech-GROW team members participated in a total of **2 workshops, 4 specialized trainings, 8 webinars, and 2 Horizon Europe Info Days**, covering key areas relevant to the successful execution of research and innovation activities (See Annex VII). These activities were selected to address concrete project needs, including proposal preparation, project budgeting and management, intellectual property protection, open science compliance, and advanced experimental methodologies.

Proposal Development, Funding Strategies, and Project Management

An important early activity within WP3 was the workshop *“How to Make the Best Use of Unfunded Project Proposals?”*, held on February 6, 2024, and attended by all project team members. The workshop focused on systematic analysis of evaluator feedback, identification of proposal weaknesses, strategic restructuring, and adaptation to alternative funding schemes. As a direct outcome, the team applied the acquired methodology to improve proposal quality, contributing to the submission of **four competitive project proposals** during the project lifetime.

To further strengthen capacity in European funding schemes, **two team members** completed the **European Training Academy (EUTA)** program on Horizon Europe proposal preparation and project management (February–March 2024). The training consisted of four intensive sessions

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412,

LED technology based on bismuth-sensitized Eu³⁺ luminescence for cost-effective indoor plant growth – LEDtech-GROW

addressing call analysis, consortium building, excellence-impact-implementation structure, ethical aspects, budgeting rules, cost eligibility, reporting obligations, and risk management. Knowledge gained through EUTA directly supported the preparation and submission of an **EUREKA network project proposal** and improved internal coordination in ongoing project planning.

International Collaboration and Short-Term Research Visit

WP3 included a **short-term research visit to the Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences (Guangzhou, P.R. China)**, attended by two LEDtech-GROW team members. The visit enabled direct exchange of methodologies, discussion of phosphor synthesis and LED fabrication strategies, and joint evaluation of experimental results.

A key outcome of this visit was the **testing and validation of developed LED systems using state-of-the-art equipment**, allowing comparative analysis of optical and performance data obtained in Serbia and China. This significantly improved data reliability and contributed to the refinement of ongoing experiments. The collaboration also resulted in the preparation of a **bilateral Serbia-China project proposal**, strengthening long-term international research cooperation.

Intellectual Property and Innovation-Oriented Training

To support innovation and the protection of research outputs, all team members attended a series of **five online webinars** dedicated to intellectual property rights and patent protection (Annex VII). Topics included trade secret protection, fundamentals of patent systems, international patent strategies, software-related IP, and preparation of patent applications. These trainings increased awareness of innovation pathways and supported the identification of research results with potential for further protection and exploitation within the LEDtech-GROW framework.

Horizon Europe Policy Alignment and Info Days

LEDtech-GROW researchers actively participated in **Horizon Europe Info Days**, including the **WIDERA Work Programme 2025** and **Cluster 6: Food, Bioeconomy, Natural Resources, Agriculture and Environment**. Participation in these events improved understanding of EU research priorities, open access policies, research assessment reforms, and science-for-policy mechanisms. As a result, new project ideas aligned with European calls were developed, leading to **one submitted proposal and one additional proposal in preparation**.

Advanced Scientific Training and Analytical Skills

To enhance experimental quality and data interpretation, all team members attended **ICDD webinars** focused on **powder X-ray diffraction (PXRD)** and **Raman spectroscopy**. These trainings strengthened skills in experimental design, phase identification, and spectral analysis, directly supporting WP1 and WP2 research activities. In addition, an **Excel training** on data processing, visualization, and basic statistical analysis improved consistency and clarity in reporting experimental results.

Open Science, Data Management, and Dissemination

All team members completed the workshop *“Open Science and Obligations for Participants in the Science Fund of the Republic of Serbia Program”* (May 13, 2025), covering open-access publishing, research data management, and institutional repositories. As a result, project outputs were

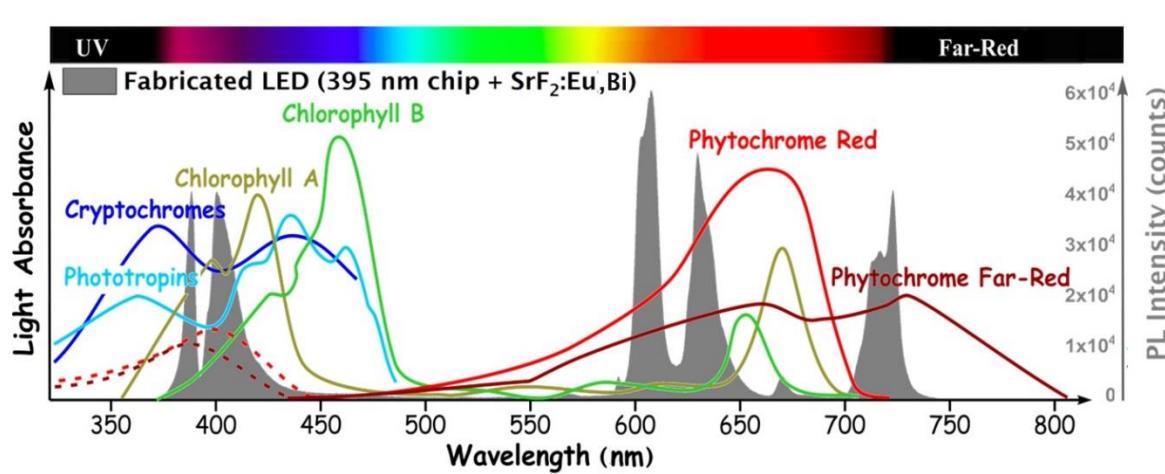
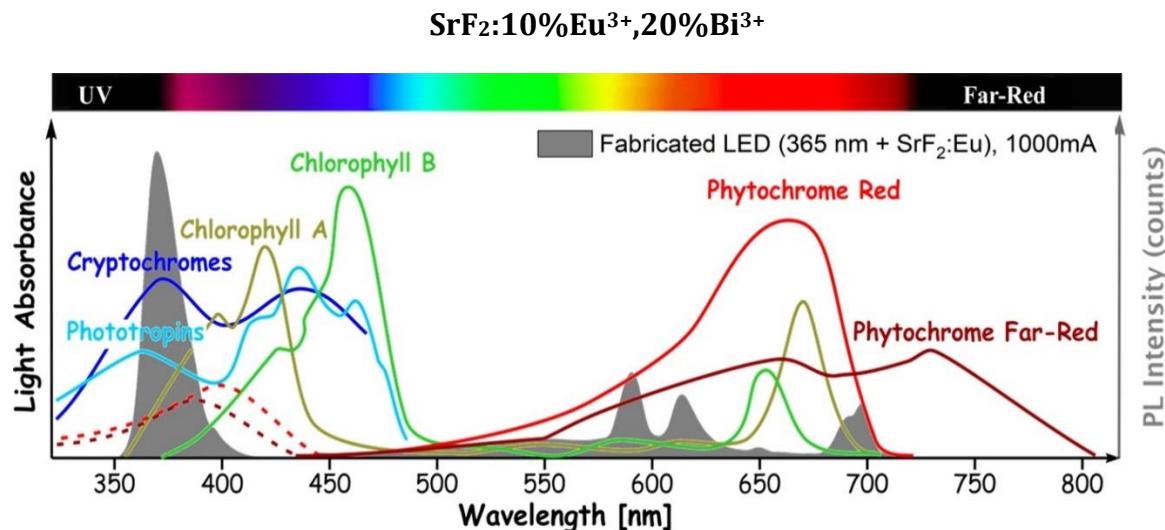
systematically deposited in **Zenodo** and **VinaR**, ensuring compliance with national and international open science requirements and increasing visibility and reproducibility of results. For more information see <https://doi.org/10.5281/zenodo.14935996>, <https://doi.org/10.5281/zenodo.14936085>, <https://doi.org/10.5281/zenodo.15782065>, <https://doi.org/10.5281/zenodo.18086075>, <https://vinar.vin.bg.ac.rs/handle/123456789/14106>, <https://vinar.vin.bg.ac.rs/handle/123456789/14936>, <https://vinar.vin.bg.ac.rs/handle/123456789/15745>, <https://vinar.vin.bg.ac.rs/handle/123456789/13836>, https://vinar.vin.bg.ac.rs/handle/123456789/13948?locale-attribute=sr_RS.

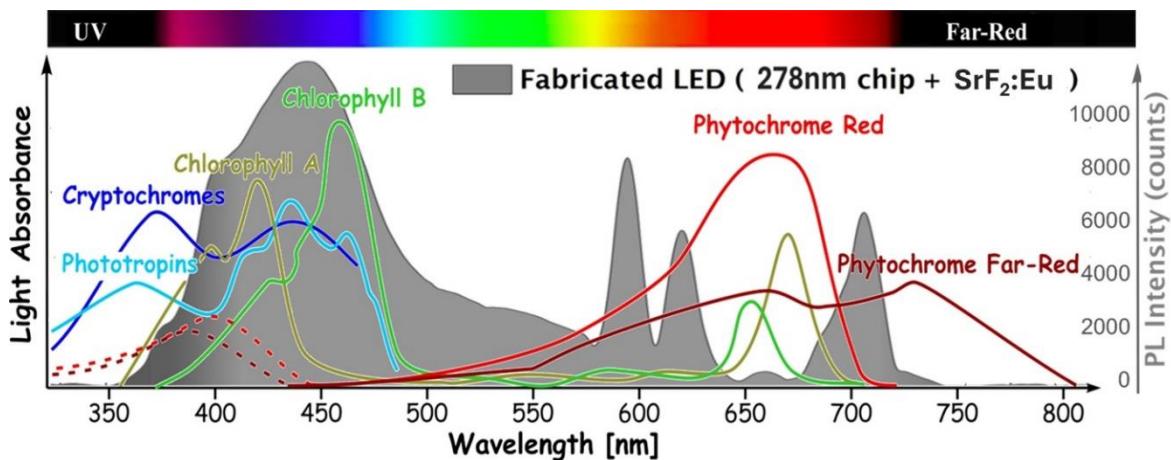
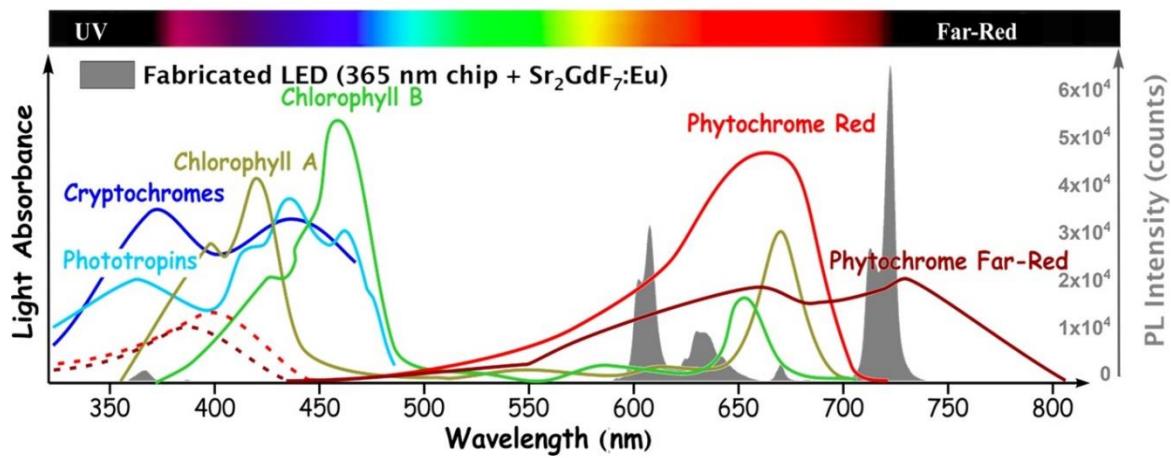
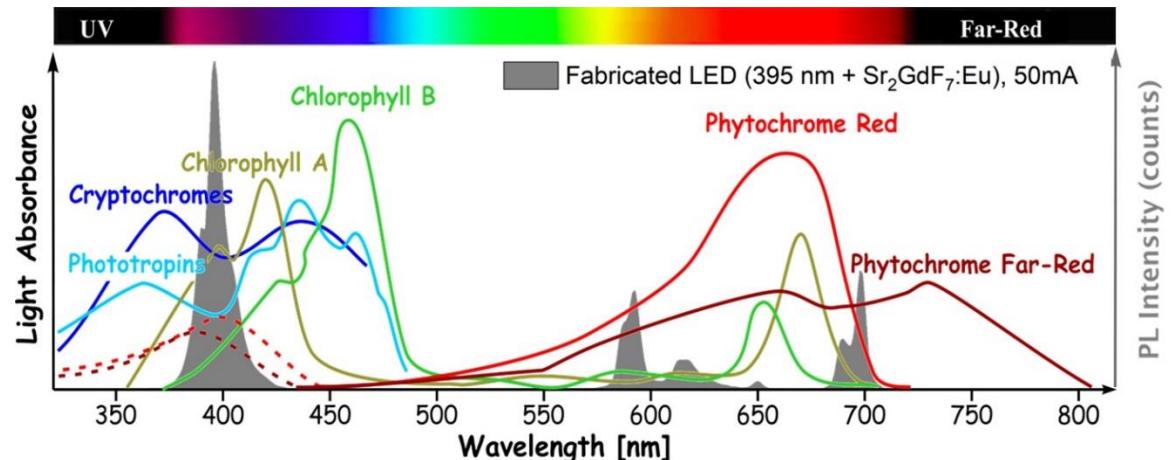
Dissemination activities included participation in national and international conferences, science fairs, and outreach events, including the **European Researchers' Night** and the **International Fair of Technics**. Scientific dissemination resulted in **five open-access journal publications** (with two additional manuscripts submitted), **six poster presentations at international conferences**, **one oral presentation at an international conference**, and **one invited talk at a domestic conference** (Annex VII). In addition, project results were communicated to a broader audience through **two popular science and business articles** published in *MOVEM* and *Biznis* magazines (Annex IV).

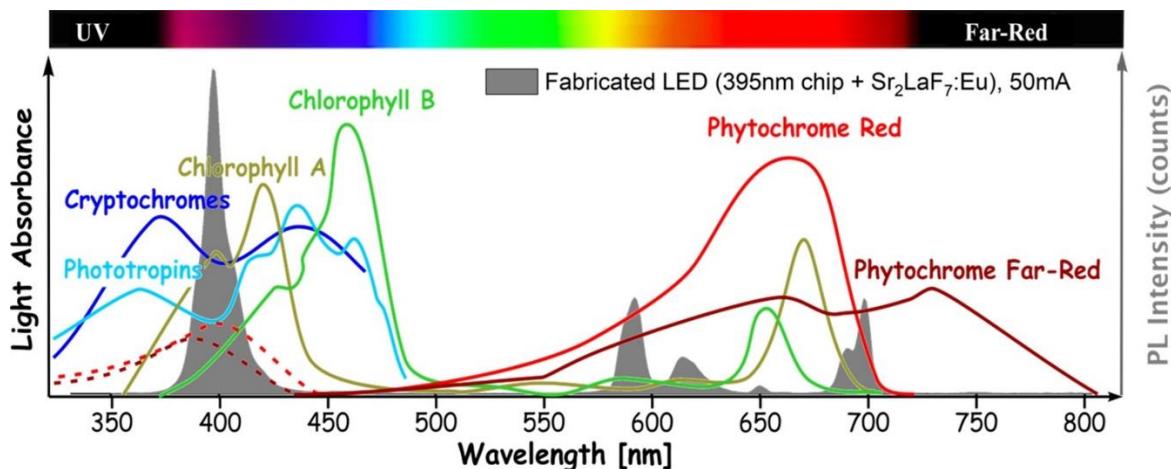
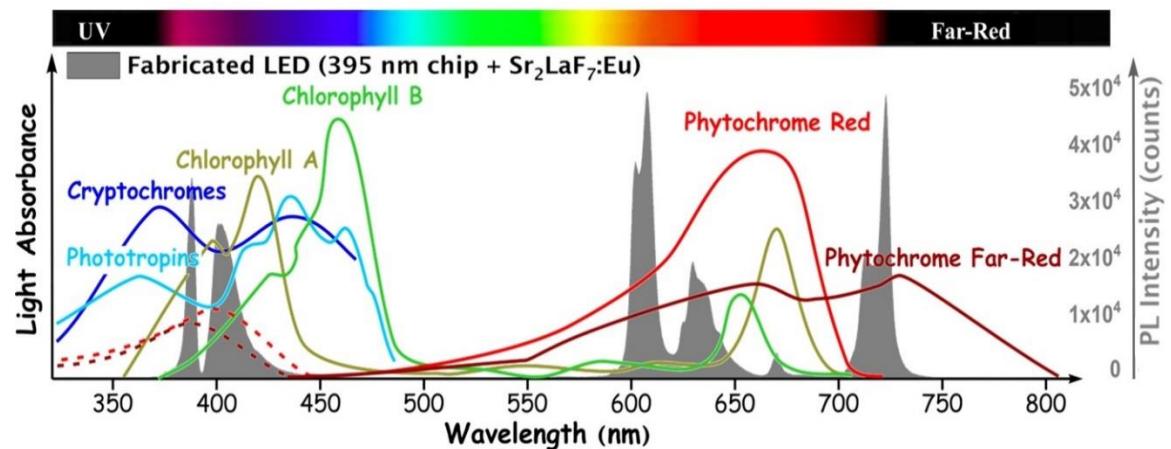
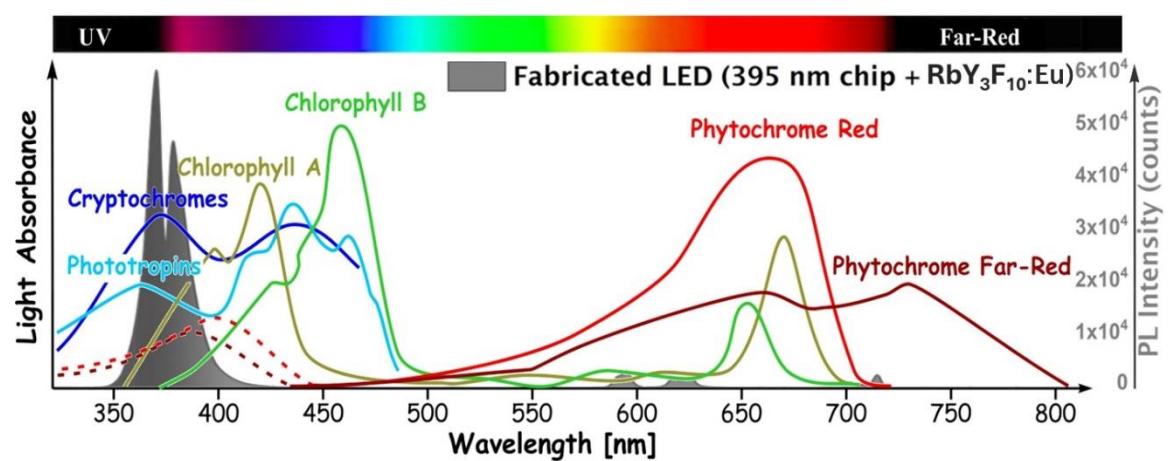
WP3 delivered measurable outcomes in terms of researcher training, international collaboration, dissemination, and future funding readiness. The activities directly supported scientific excellence, improved experimental quality, strengthened international partnerships, and contributed to the preparation of multiple competitive project proposals, ensuring continuity of research and impact beyond the duration of the LEDtech-GROW project.

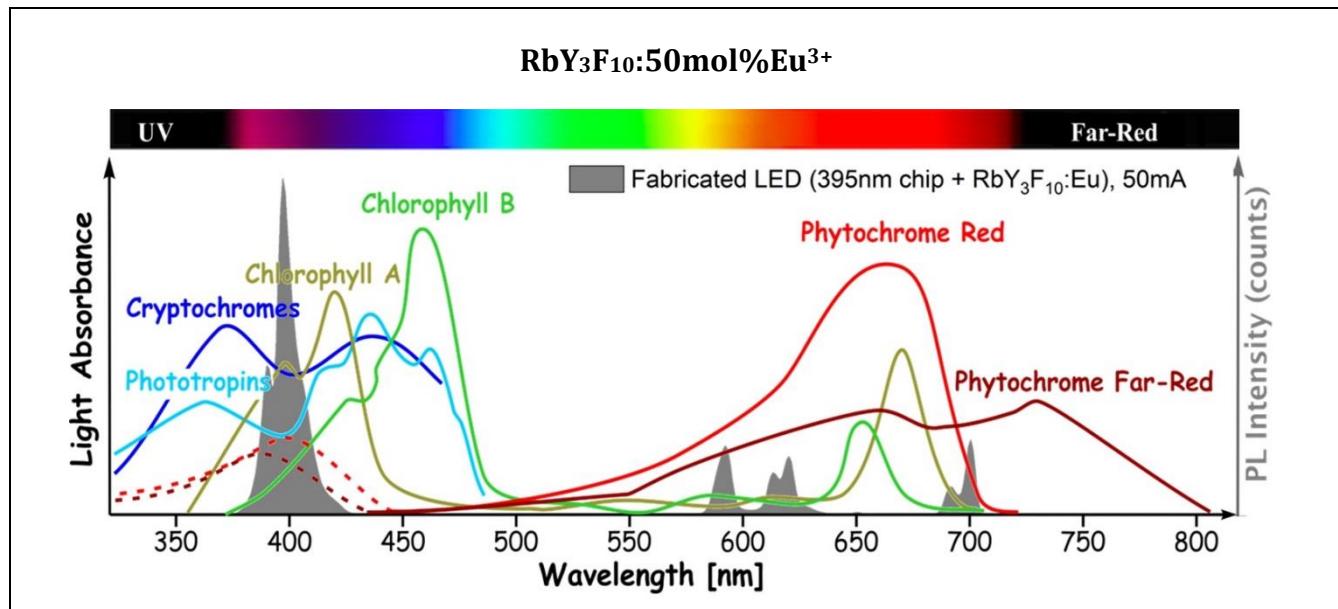
10. Conclusions

LEDtech-GROW team members reached **Milestone M1.1 - A list of Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors defined** (verification: Single-phase crystal structure and appropriate phosphors' emission that matches the PAR spectrum). The list is as follows:



1. Eu³⁺-doped Sr₂GdF₇ colloidal and powder nanoparticles
2. Eu³⁺-doped RbY₃F₁₀ powder nanoparticles
3. Bi³⁺, Eu³⁺-doped SrF₂ nanopowders




LEDtech-GROW team members reached **Milestone M1.2 - High-performance phosphors selected** (verification: Superior moisture resistance, QE > 50%, FWHM < 50 nm, and low thermal quenching of luminescence up to 150 °C). The list is as follows:




1. Sr₂GdF₇:80 mol% Eu³⁺ nanoparticles (QE=60.4%, Thermal stability= 83%)
2. SrF₂:10mol%Eu³⁺, 20mol%Bi³⁺ nanoparticles (highest red/blue emission portion 40.8 : 59.2).


3. $\text{BaYF}_5:10\text{mol\%Eu}^{3+}, 20\text{mol\%Bi}^{3+}$ nanoparticles (energy transfer efficiencies (ηT) of 16%).

LEDtech-GROW team members reached **Milestone M2.1** - **LEDs fabricated** (verification: LED emission matches the PAR spectrum of plant photoreceptors (see below)).

SrF₂:10%Eu³⁺,20%Bi³⁺**Sr₂GdF₇: 80%Eu³⁺****Sr₂GdF₇: 80%Eu³⁺**

Sr₂LaF₇:50mol%Eu³⁺**Sr₂LaF₇:50mol%Eu³⁺****RbY₃F₁₀:50mol%Eu³⁺**

The LEDtech-GROW team members successfully achieved **Milestone M3.1, Professional development of young and early-stage researchers** completed. Verification was provided through the completion of European Training Academy courses and intellectual property rights (IPR) training, as well as active participation in dissemination and proposal preparation activities. Team members attended 2 workshops, 4 specialized trainings, 8 webinars, and 2 information days. In terms of scientific dissemination, they delivered six poster presentations at international conferences, one oral presentation at an international conference, and one invited talk at a domestic conference. In addition, the team submitted four project proposals as principal investigators, with funding decisions currently pending.

The ability to convert UV into blue and red light in inorganic phosphors for LEDs in agricultural applications is essential to boost the photosynthesis of plants in greenhouses. For example, plants like tomatoes, peppers, and orchids benefit from red light during their flowering and fruiting stages. For plants like strawberries or cucumbers, red light will support better fruit production. Leafy greens like lettuce, spinach, and kale thrive under blue light as it promotes healthy leaf growth. Also, blue light helps young seedlings develop strong, healthy leaves and stems, giving them a solid start. **Therefore, the tunable red and blue emission achieved in Bi³⁺-co-doped SrF₂:Eu³⁺ nanoparticles demonstrates that this LED configuration exhibits the most favorable properties among all fabricated devices, offering balanced spectral coverage and the highest potential for supporting plant growth throughout all developmental stages.**